license: apache-2.0
pipeline_tag: text-generation
tags:
- text-generation-inference
English | 简体中文
👋 join us on Twitter, Discord and WeChat
W4A16 LLM Model Deployment
LMDeploy supports LLM model inference of 4-bit weight, with the minimum requirement for NVIDIA graphics cards being sm80.
Before proceeding with the inference, please ensure that lmdeploy(>=v0.0.14) is installed.
pip install 'lmdeploy>=0.0.14'
4-bit LLM model Inference
You can download the pre-quantized 4-bit weight models from LMDeploy's model zoo and conduct inference using the following command.
Alternatively, you can quantize 16-bit weights to 4-bit weights following the "4-bit Weight Quantization" section, and then perform inference as per the below instructions.
Take the 4-bit Qwen-Chat-7B model from the model zoo as an example:
git-lfs install
git clone https://huggingface.co/lmdeploy/qwen-chat-7b-4bit
As demonstrated in the command below, first convert the model's layout using turbomind.deploy
, and then you can interact with the AI assistant in the terminal
## Convert the model's layout and store it in the default path, ./workspace.
lmdeploy convert \
--model-name qwen-7b \
--model-path ./qwen-chat-7b-4bit \
--model-format awq \
--group-size 128
## inference
lmdeploy chat ./workspace
Serve with gradio
If you wish to interact with the model via web ui, please initiate the gradio server as indicated below:
lmdeploy serve gradio ./workspace --server_name {ip_addr} --server_port {port}
Subsequently, you can open the website http://{ip_addr}:{port}
in your browser and interact with the model
Inference Performance
We benchmarked the Llama 2 7B and 13B with 4-bit quantization on NVIDIA GeForce RTX 4090 using profile_generation.py. And we measure the token generation throughput (tokens/s) by setting a single prompt token and generating 512 tokens. All the results are measured for single batch inference.
model | llm-awq | mlc-llm | turbomind |
---|---|---|---|
Llama 2 7B | 112.9 | 159.4 | 206.4 |
Llama 2 13B | N/A | 90.7 | 115.8 |
pip install nvidia-ml-py
python profile_generation.py \
--model-path /path/to/your/model \
--concurrency 1 8 --prompt-tokens 0 512 --completion-tokens 2048 512
4-bit Weight Quantization
It includes two steps:
- generate quantization parameter
- quantize model according to the parameter
Step 1: Generate Quantization Parameter
lmdeploy lite calibrate \
--model $HF_MODEL \
--calib_dataset 'c4' \ # Calibration dataset, supports c4, ptb, wikitext2, pileval
--calib_samples 128 \ # Number of samples in the calibration set, if memory is insufficient, you can appropriately reduce this
--calib_seqlen 2048 \ # Length of a single piece of text, if memory is insufficient, you can appropriately reduce this
--work_dir $WORK_DIR \ # Folder storing Pytorch format quantization statistics parameters and post-quantization weight
Step2: Quantize Weights
LMDeploy employs AWQ algorithm for model weight quantization.
lmdeploy lite auto_awq \
--model $HF_MODEL \
--w_bits 4 \ # Bit number for weight quantization
--w_sym False \ # Whether to use symmetric quantization for weights
--w_group_size 128 \ # Group size for weight quantization statistics
--work_dir $WORK_DIR \ # Directory saving quantization parameters from Step 1
After the quantization is complete, the quantized model is saved to $WORK_DIR
. Then you can proceed with model inference according to the instructions in the "4-Bit Weight Model Inference" section.