File size: 4,429 Bytes
3f4f3be ee56a27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
---
license: llama2
pipeline_tag: text-generation
tags:
- text-generation-inference
---
<div align="center">
<img src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F64ccdc322e592905f922a06e%2FVhwQtaklohkUXFWkjA-3M.png%26quot%3B%3C%2Fspan%3E width="450"/>
English | [简体中文](README_zh-CN.md)
</div>
<p align="center">
👋 join us on <a href="https://twitter.com/intern_lm" target="_blank">Twitter</a>, <a href="https://discord.gg/xa29JuW87d" target="_blank">Discord</a> and <a href="https://r.vansin.top/?r=internwx" target="_blank">WeChat</a>
</p>
# W4A16 LLM Model Deployment
LMDeploy supports LLM model inference of 4-bit weight, with the minimum requirement for NVIDIA graphics cards being sm80.
Before proceeding with the inference, please ensure that lmdeploy(>=v0.0.4) is installed.
```shell
pip install lmdeploy
```
## 4-bit LLM model Inference
You can download the pre-quantized 4-bit weight models from LMDeploy's [model zoo](https://huggingface.co/lmdeploy) and conduct inference using the following command.
Alternatively, you can quantize 16-bit weights to 4-bit weights following the ["4-bit Weight Quantization"](#4-bit-weight-quantization) section, and then perform inference as per the below instructions.
Take the 4-bit Llama-2-7B model from the model zoo as an example:
```shell
git-lfs install
git clone https://huggingface.co/lmdeploy/llama2-chat-7b-w4
```
As demonstrated in the command below, first convert the model's layout using `turbomind.deploy`, and then you can interact with the AI assistant in the terminal
```shell
## Convert the model's layout and store it in the default path, ./workspace.
python3 -m lmdeploy.serve.turbomind.deploy \
--model-name llama2 \
--model-path ./llama2-chat-7b-w4 \
--model-format awq \
--group-size 128
## inference
python3 -m lmdeploy.turbomind.chat ./workspace
```
## Serve with gradio
If you wish to interact with the model via web ui, please initiate the gradio server as indicated below:
```shell
python3 -m lmdeploy.serve.turbomind ./workspace --server_name {ip_addr} ----server_port {port}
```
Subsequently, you can open the website `http://{ip_addr}:{port}` in your browser and interact with the model
## Inference Performance
We benchmarked the Llama 2 7B and 13B with 4-bit quantization on NVIDIA GeForce RTX 4090 using [profile_generation.py](https://github.com/InternLM/lmdeploy/blob/main/benchmark/profile_generation.py). And we measure the token generation throughput (tokens/s) by setting a single prompt token and generating 512 tokens. All the results are measured for single batch inference.
| model | llm-awq | mlc-llm | turbomind |
| ----------- | ------- | ------- | --------- |
| Llama 2 7B | 112.9 | 159.4 | 206.4 |
| Llama 2 13B | N/A | 90.7 | 115.8 |
```shell
python benchmark/profile_generation.py \
./workspace \
--concurrency 1 --input_seqlen 1 --output_seqlen 512
```
## 4-bit Weight Quantization
It includes two steps:
- generate quantization parameter
- quantize model according to the parameter
### Step 1: Generate Quantization Parameter
```shell
python3 -m lmdeploy.lite.apis.calibrate \
--model $HF_MODEL \
--calib_dataset 'c4' \ # Calibration dataset, supports c4, ptb, wikitext2, pileval
--calib_samples 128 \ # Number of samples in the calibration set, if memory is insufficient, you can appropriately reduce this
--calib_seqlen 2048 \ # Length of a single piece of text, if memory is insufficient, you can appropriately reduce this
--work_dir $WORK_DIR \ # Folder storing Pytorch format quantization statistics parameters and post-quantization weight
```
### Step2: Quantize Weights
LMDeploy employs AWQ algorithm for model weight quantization.
```shell
python3 -m lmdeploy.lite.apis.auto_awq \
--model $HF_MODEL \
--w_bits 4 \ # Bit number for weight quantization
--w_sym False \ # Whether to use symmetric quantization for weights
--w_group_size 128 \ # Group size for weight quantization statistics
--work_dir $WORK_DIR \ # Directory saving quantization parameters from Step 1
```
After the quantization is complete, the quantized model is saved to `$WORK_DIR`. Then you can proceed with model inference according to the instructions in the ["4-Bit Weight Model Inference"](#4-bit-llm-model-inference) section.
|