unsubscribe commited on
Commit
ee56a27
·
1 Parent(s): 3f4f3be

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +109 -1
README.md CHANGED
@@ -3,4 +3,112 @@ license: llama2
3
  pipeline_tag: text-generation
4
  tags:
5
  - text-generation-inference
6
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  pipeline_tag: text-generation
4
  tags:
5
  - text-generation-inference
6
+ ---
7
+
8
+ <div align="center">
9
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/64ccdc322e592905f922a06e/VhwQtaklohkUXFWkjA-3M.png" width="450"/>
10
+
11
+ English | [简体中文](README_zh-CN.md)
12
+
13
+ </div>
14
+
15
+ <p align="center">
16
+ 👋 join us on <a href="https://twitter.com/intern_lm" target="_blank">Twitter</a>, <a href="https://discord.gg/xa29JuW87d" target="_blank">Discord</a> and <a href="https://r.vansin.top/?r=internwx" target="_blank">WeChat</a>
17
+ </p>
18
+
19
+
20
+ # W4A16 LLM Model Deployment
21
+
22
+ LMDeploy supports LLM model inference of 4-bit weight, with the minimum requirement for NVIDIA graphics cards being sm80.
23
+
24
+ Before proceeding with the inference, please ensure that lmdeploy(>=v0.0.4) is installed.
25
+
26
+ ```shell
27
+ pip install lmdeploy
28
+ ```
29
+
30
+ ## 4-bit LLM model Inference
31
+
32
+ You can download the pre-quantized 4-bit weight models from LMDeploy's [model zoo](https://huggingface.co/lmdeploy) and conduct inference using the following command.
33
+
34
+ Alternatively, you can quantize 16-bit weights to 4-bit weights following the ["4-bit Weight Quantization"](#4-bit-weight-quantization) section, and then perform inference as per the below instructions.
35
+
36
+ Take the 4-bit Llama-2-7B model from the model zoo as an example:
37
+
38
+ ```shell
39
+ git-lfs install
40
+ git clone https://huggingface.co/lmdeploy/llama2-chat-7b-w4
41
+ ```
42
+
43
+ As demonstrated in the command below, first convert the model's layout using `turbomind.deploy`, and then you can interact with the AI assistant in the terminal
44
+
45
+ ```shell
46
+
47
+ ## Convert the model's layout and store it in the default path, ./workspace.
48
+ python3 -m lmdeploy.serve.turbomind.deploy \
49
+ --model-name llama2 \
50
+ --model-path ./llama2-chat-7b-w4 \
51
+ --model-format awq \
52
+ --group-size 128
53
+
54
+ ## inference
55
+ python3 -m lmdeploy.turbomind.chat ./workspace
56
+ ```
57
+
58
+ ## Serve with gradio
59
+
60
+ If you wish to interact with the model via web ui, please initiate the gradio server as indicated below:
61
+
62
+ ```shell
63
+ python3 -m lmdeploy.serve.turbomind ./workspace --server_name {ip_addr} ----server_port {port}
64
+ ```
65
+
66
+ Subsequently, you can open the website `http://{ip_addr}:{port}` in your browser and interact with the model
67
+
68
+ ## Inference Performance
69
+
70
+ We benchmarked the Llama 2 7B and 13B with 4-bit quantization on NVIDIA GeForce RTX 4090 using [profile_generation.py](https://github.com/InternLM/lmdeploy/blob/main/benchmark/profile_generation.py). And we measure the token generation throughput (tokens/s) by setting a single prompt token and generating 512 tokens. All the results are measured for single batch inference.
71
+
72
+ | model | llm-awq | mlc-llm | turbomind |
73
+ | ----------- | ------- | ------- | --------- |
74
+ | Llama 2 7B | 112.9 | 159.4 | 206.4 |
75
+ | Llama 2 13B | N/A | 90.7 | 115.8 |
76
+
77
+ ```shell
78
+ python benchmark/profile_generation.py \
79
+ ./workspace \
80
+ --concurrency 1 --input_seqlen 1 --output_seqlen 512
81
+ ```
82
+
83
+ ## 4-bit Weight Quantization
84
+
85
+ It includes two steps:
86
+
87
+ - generate quantization parameter
88
+ - quantize model according to the parameter
89
+
90
+ ### Step 1: Generate Quantization Parameter
91
+
92
+ ```shell
93
+ python3 -m lmdeploy.lite.apis.calibrate \
94
+ --model $HF_MODEL \
95
+ --calib_dataset 'c4' \ # Calibration dataset, supports c4, ptb, wikitext2, pileval
96
+ --calib_samples 128 \ # Number of samples in the calibration set, if memory is insufficient, you can appropriately reduce this
97
+ --calib_seqlen 2048 \ # Length of a single piece of text, if memory is insufficient, you can appropriately reduce this
98
+ --work_dir $WORK_DIR \ # Folder storing Pytorch format quantization statistics parameters and post-quantization weight
99
+ ```
100
+
101
+ ### Step2: Quantize Weights
102
+
103
+ LMDeploy employs AWQ algorithm for model weight quantization.
104
+
105
+ ```shell
106
+ python3 -m lmdeploy.lite.apis.auto_awq \
107
+ --model $HF_MODEL \
108
+ --w_bits 4 \ # Bit number for weight quantization
109
+ --w_sym False \ # Whether to use symmetric quantization for weights
110
+ --w_group_size 128 \ # Group size for weight quantization statistics
111
+ --work_dir $WORK_DIR \ # Directory saving quantization parameters from Step 1
112
+ ```
113
+
114
+ After the quantization is complete, the quantized model is saved to `$WORK_DIR`. Then you can proceed with model inference according to the instructions in the ["4-Bit Weight Model Inference"](#4-bit-llm-model-inference) section.