vdr-2b-v1 / README.md
marco's picture
Upload folder using huggingface_hub
bbfaa75 verified
|
raw
history blame
7.96 kB
metadata
license: apache-2.0
language:
  - en
base_model:
  - MrLight/dse-qwen2-2b-mrl-v1
tags:
  - transformers
  - Qwen2-VL

vdr-2b-v1

vdr-2b-v1 is an english only embedding model designed for visual document retrieval. This model is designed to encode document page screenshots into dense single-vector representations, this will effectively allow to search and query visually rich documents without the need for any OCR, data extraction pipelines, chunking...

  • Trained on the 🇬🇧 English vdr-multi-train subset: extensive training dataset of 100k high-quality english samples.

  • Low VRAM and Faster Inference: achieves better results on synthetic Vidore benchmarks with just 30% of the base model image resolution. This results in 3x faster inference and much lower VRAM usage.

  • Matryoshka Representation Learning: You can reduce the vectors size 3x and still keep 98% of the embeddings quality.

The multilingual version is available here. To know more about both models, read the announcement blogpost.

Usage

Initialize model and processor

from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
from PIL import Image
import torch
import math

# more pixels -> better embeddings -> more VRAM -> slower inference
# From my experience, 768 image patches is the right spot for compute efficient embeddings.
max_pixels = 768 * 28 * 28
min_pixels = 1 * 28 * 28

# Load the embedding model and processor
model = Qwen2VLForConditionalGeneration.from_pretrained(
    'llamaindex/vdr-2b-v1',
    attn_implementation="flash_attention_2",
    torch_dtype=torch.bfloat16,
    device_map="cuda:0"
).eval()

processor = AutoProcessor.from_pretrained(
    'llamaindex/vdr-2b-v1',
    min_pixels=min_pixels,
    max_pixels=max_pixels
)

model.padding_side = "left"
processor.tokenizer.padding_side = "left"

document_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>What is shown in this image?<|im_end|>\n<|endoftext|>"

query_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Query: %s<|im_end|>\n<|endoftext|>"

Encode queries

def encode_queries(queries: list[str], dimension: int) -> torch.Tensor:
    """
    Encode a list of queries into a tensor of embeddings.

    Args:
        queries: A list of strings, each representing a query.
        dimension: The desired dimension of the output embeddings.

    Returns:
        A tensor of shape (num_queries, dimension) containing the encoded queries.
    """

    dummy_image = Image.new('RGB', (56, 56))
    inputs = processor(
        text=[query_prompt % x for x in queries],
        images=[dummy_image for _ in queries],
        videos=None,
        padding='longest',
        return_tensors='pt'
    ).to('cuda:0')

    cache_position = torch.arange(0, len(queries))
    inputs = model.prepare_inputs_for_generation(
        **inputs, cache_position=cache_position, use_cache=False)

    with torch.no_grad():
        output = self.model(
            **inputs,
            return_dict=True,
            output_hidden_states=True
        )

    embeddings = output.hidden_states[-1][:, -1]
    return torch.nn.functional.normalize(embeddings[:, :dimension], p=2, dim=-1)

Encode documents

def round_by_factor(number: float, factor: int) -> int:
    return round(number / factor) * factor

def ceil_by_factor(number: float, factor: int) -> int:
    return math.ceil(number / factor) * factor

def floor_by_factor(number: float, factor: int) -> int:
    return math.floor(number / factor) * factor

def smart_resize(height: int, width: int) -> tuple[int, int]:
    h_bar = max(28, round_by_factor(height, 28))
    w_bar = max(28, round_by_factor(width, 28))
    if h_bar * w_bar > max_pixels:
        beta = math.sqrt((height * width) / max_pixels)
        h_bar = floor_by_factor(height / beta, 28)
        w_bar = floor_by_factor(width / beta, 28)
    elif h_bar * w_bar < min_pixels:
        beta = math.sqrt(min_pixels / (height * width))
        h_bar = ceil_by_factor(height * beta, 28)
        w_bar = ceil_by_factor(width * beta, 28)
    return w_bar, h_bar

def resize(image: Image.Image):
    new_size = smart_resize(image.height, image.width)
    return image.resize(new_size)

def encode_documents(documents: list[Image.Image], dimension: int):
    """
    Encode a list of images into a tensor of embeddings.

    Args:
        documents: A list of PIL Image objects.
        dimension: The desired dimension of the output embeddings.

    Returns:
        A tensor of shape (num_documents, dimension) containing the encoded images.
    """
    
    inputs = processor(
        text=[document_prompt] * len(documents),
        images=[resize(x) for x in documents],
        videos=None,
        padding='longest',
        return_tensors='pt'
    ).to('cuda:0')

    cache_position = torch.arange(0, len(queries))
    inputs = model.prepare_inputs_for_generation(
        **inputs, cache_position=cache_position, use_cache=False)

    with torch.no_grad():
        output = self.model(
            **inputs,
            return_dict=True,
            output_hidden_states=True
        )
    
    embeddings = output.hidden_states[-1][:, -1]
    return torch.nn.functional.normalize(embeddings[:, :dimension], p=2, dim=-1)

Training

The model is based on MrLight/dse-qwen2-2b-mrl-v1 and it was trained on the new vdr-multilingual-train english subset that consinsists of 100k high quality samples. It was trained for 1 epoch using the DSE approach, with a batch size of 128 and hard-mined negatives.

Results

The model has been evaluated on the Vidore benchmark. All evaluations are performed by calculating NDCG@5 scores using an image resolution that can be represented with maximum 768 tokens.

On the full Vidore benchmark (evaluated with 768 image tokens), both the multilingual and the english-only version performs better than the base model.

Avg shiftproject government healthcare energy ai docvqa arxivqa tatdqa infovqa tabfquad
dse-qwen2-2b-mrl-v1 83.6 79.8 95.7 96.9 92 98.2 56.3 85.2 53.9 87.5 90.3
vdr-2b-multi-v1 84.0 82.4 95.5 96.5 91.2 98.5 58.5 84.7 53.6 87.1 92.2
vdr-2b-v1 84.3 83.4 96.9 97.2 92.6 96.8 57.4 85.1 54.1 87.9 91.3

Avg shiftproject government healthcare energy ai
dse-qwen2-2b-mrl-v1 (2560 image tokens) 93.0 82 96 96.4 92.9 97.5
vdr-2b-v1 (768 image tokens) 93.4 83.4 96.9 97.2 92.6 96.8

vdr-2b-v1 matches the performance of the base model on vidore synthetic datasets, while only using 30% of the image tokens (768 vs. 2560). This results in 3x faster inference and much lower VRAM usage.