vdr-2b-v1 / custom_st.py
cheesyFishes's picture
add back sentence-transformers files
6908857 verified
raw
history blame
5.98 kB
import base64
import json
import os
import math
from io import BytesIO
from typing import Any, Dict, List, Literal, Optional, Union
import requests
import torch
from PIL import Image
from torch import nn
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
class Transformer(nn.Module):
save_in_root: bool = True
def __init__(
self,
model_name_or_path: str = 'llamaindex/vdr-2b-multi-v1',
processor_name_or_path: Optional[str] = None,
max_pixels: int = 768 * 28 * 28,
min_pixels: int = 1 * 28 * 28,
dimension: int = 2048,
cache_dir: Optional[str] = None,
device: str = 'cuda:0',
**kwargs,
) -> None:
super(Transformer, self).__init__()
self.device = device
self.dimension = dimension
self.max_pixels = max_pixels
self.min_pixels = min_pixels
# Try to use flash attention if available, fallback to default attention if not
try:
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
model_name_or_path,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
device_map=device,
cache_dir=cache_dir,
**kwargs
).eval()
except (ImportError, ValueError) as e:
print(f"Flash attention not available, falling back to default attention: {e}")
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
model_name_or_path,
torch_dtype=torch.bfloat16,
device_map=device,
cache_dir=cache_dir,
**kwargs
).eval()
# Initialize processor
self.processor = AutoProcessor.from_pretrained(
processor_name_or_path or model_name_or_path,
min_pixels=min_pixels,
max_pixels=max_pixels,
cache_dir=cache_dir
)
self.model.padding_side = "left"
self.processor.tokenizer.padding_side = "left"
self.document_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>What is shown in this image?<|im_end|>\n<|endoftext|>"
self.query_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Query: %s<|im_end|>\n<|endoftext|>"
def _smart_resize(self, height: int, width: int) -> tuple[int, int]:
h_bar = max(28, self._round_by_factor(height, 28))
w_bar = max(28, self._round_by_factor(width, 28))
if h_bar * w_bar > self.max_pixels:
beta = math.sqrt((height * width) / self.max_pixels)
h_bar = self._floor_by_factor(height / beta, 28)
w_bar = self._floor_by_factor(width / beta, 28)
elif h_bar * w_bar < self.min_pixels:
beta = math.sqrt(self.min_pixels / (height * width))
h_bar = self._ceil_by_factor(height * beta, 28)
w_bar = self._ceil_by_factor(width * beta, 28)
return w_bar, h_bar
@staticmethod
def _round_by_factor(number: float, factor: int) -> int:
return round(number / factor) * factor
@staticmethod
def _ceil_by_factor(number: float, factor: int) -> int:
return math.ceil(number / factor) * factor
@staticmethod
def _floor_by_factor(number: float, factor: int) -> int:
return math.floor(number / factor) * factor
def _resize_image(self, image: Image.Image) -> Image.Image:
new_size = self._smart_resize(image.height, image.width)
return image.resize(new_size)
@staticmethod
def _decode_data_image(data_image_str: str) -> Image.Image:
header, data = data_image_str.split(',', 1)
image_data = base64.b64decode(data)
return Image.open(BytesIO(image_data))
def _process_input(self, texts: List[Union[str, Image.Image]]) -> tuple[List[str], List[Image.Image]]:
processed_texts = []
processed_images = []
dummy_image = Image.new('RGB', (56, 56))
for sample in texts:
if isinstance(sample, str):
processed_texts.append(self.query_prompt % sample)
processed_images.append(dummy_image)
elif isinstance(sample, Image.Image):
processed_texts.append(self.document_prompt)
processed_images.append(self._resize_image(sample))
return processed_texts, processed_images
def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
cache_position = torch.arange(0, features['input_ids'].shape[0])
inputs = self.model.prepare_inputs_for_generation(
**features, cache_position=cache_position, use_cache=False
)
with torch.no_grad():
output = self.model(
**inputs,
return_dict=True,
output_hidden_states=True
)
embeddings = output.hidden_states[-1][:, -1]
features['sentence_embedding'] = torch.nn.functional.normalize(
embeddings[:, :self.dimension], p=2, dim=-1
)
return features
def tokenize(self, texts: List[Union[str, Image.Image]], padding: str = 'longest') -> Dict[str, torch.Tensor]:
processed_texts, processed_images = self._process_input(texts)
inputs = self.processor(
text=processed_texts,
images=processed_images,
videos=None,
padding=padding,
return_tensors='pt'
)
return {k: v.to(self.device) for k, v in inputs.items()}
def save(self, output_path: str, safe_serialization: bool = True) -> None:
self.model.save_pretrained(output_path, safe_serialization=safe_serialization)
self.processor.save_pretrained(output_path)