|
import base64 |
|
import json |
|
import os |
|
import math |
|
from io import BytesIO |
|
from typing import Any, Dict, List, Literal, Optional, Union |
|
|
|
import requests |
|
import torch |
|
from PIL import Image |
|
from torch import nn |
|
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration |
|
|
|
class Transformer(nn.Module): |
|
save_in_root: bool = True |
|
|
|
def __init__( |
|
self, |
|
model_name_or_path: str = 'llamaindex/vdr-2b-multi-v1', |
|
processor_name_or_path: Optional[str] = None, |
|
max_pixels: int = 768 * 28 * 28, |
|
min_pixels: int = 1 * 28 * 28, |
|
dimension: int = 2048, |
|
cache_dir: Optional[str] = None, |
|
device: str = 'cuda:0', |
|
**kwargs, |
|
) -> None: |
|
super(Transformer, self).__init__() |
|
|
|
self.device = device |
|
self.dimension = dimension |
|
self.max_pixels = max_pixels |
|
self.min_pixels = min_pixels |
|
|
|
|
|
try: |
|
self.model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
model_name_or_path, |
|
attn_implementation="flash_attention_2", |
|
torch_dtype=torch.bfloat16, |
|
device_map=device, |
|
cache_dir=cache_dir, |
|
**kwargs |
|
).eval() |
|
except (ImportError, ValueError) as e: |
|
print(f"Flash attention not available, falling back to default attention: {e}") |
|
self.model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
model_name_or_path, |
|
torch_dtype=torch.bfloat16, |
|
device_map=device, |
|
cache_dir=cache_dir, |
|
**kwargs |
|
).eval() |
|
|
|
|
|
self.processor = AutoProcessor.from_pretrained( |
|
processor_name_or_path or model_name_or_path, |
|
min_pixels=min_pixels, |
|
max_pixels=max_pixels, |
|
cache_dir=cache_dir |
|
) |
|
|
|
self.model.padding_side = "left" |
|
self.processor.tokenizer.padding_side = "left" |
|
|
|
self.document_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>What is shown in this image?<|im_end|>\n<|endoftext|>" |
|
self.query_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Query: %s<|im_end|>\n<|endoftext|>" |
|
|
|
def _smart_resize(self, height: int, width: int) -> tuple[int, int]: |
|
h_bar = max(28, self._round_by_factor(height, 28)) |
|
w_bar = max(28, self._round_by_factor(width, 28)) |
|
if h_bar * w_bar > self.max_pixels: |
|
beta = math.sqrt((height * width) / self.max_pixels) |
|
h_bar = self._floor_by_factor(height / beta, 28) |
|
w_bar = self._floor_by_factor(width / beta, 28) |
|
elif h_bar * w_bar < self.min_pixels: |
|
beta = math.sqrt(self.min_pixels / (height * width)) |
|
h_bar = self._ceil_by_factor(height * beta, 28) |
|
w_bar = self._ceil_by_factor(width * beta, 28) |
|
return w_bar, h_bar |
|
|
|
@staticmethod |
|
def _round_by_factor(number: float, factor: int) -> int: |
|
return round(number / factor) * factor |
|
|
|
@staticmethod |
|
def _ceil_by_factor(number: float, factor: int) -> int: |
|
return math.ceil(number / factor) * factor |
|
|
|
@staticmethod |
|
def _floor_by_factor(number: float, factor: int) -> int: |
|
return math.floor(number / factor) * factor |
|
|
|
def _resize_image(self, image: Image.Image) -> Image.Image: |
|
new_size = self._smart_resize(image.height, image.width) |
|
return image.resize(new_size) |
|
|
|
@staticmethod |
|
def _decode_data_image(data_image_str: str) -> Image.Image: |
|
header, data = data_image_str.split(',', 1) |
|
image_data = base64.b64decode(data) |
|
return Image.open(BytesIO(image_data)) |
|
|
|
def _process_input(self, texts: List[Union[str, Image.Image]]) -> tuple[List[str], List[Image.Image]]: |
|
processed_texts = [] |
|
processed_images = [] |
|
dummy_image = Image.new('RGB', (56, 56)) |
|
|
|
for sample in texts: |
|
if isinstance(sample, str): |
|
processed_texts.append(self.query_prompt % sample) |
|
processed_images.append(dummy_image) |
|
elif isinstance(sample, Image.Image): |
|
processed_texts.append(self.document_prompt) |
|
processed_images.append(self._resize_image(sample)) |
|
|
|
return processed_texts, processed_images |
|
|
|
def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: |
|
cache_position = torch.arange(0, features['input_ids'].shape[0]) |
|
inputs = self.model.prepare_inputs_for_generation( |
|
**features, cache_position=cache_position, use_cache=False |
|
) |
|
|
|
with torch.no_grad(): |
|
output = self.model( |
|
**inputs, |
|
return_dict=True, |
|
output_hidden_states=True |
|
) |
|
|
|
embeddings = output.hidden_states[-1][:, -1] |
|
features['sentence_embedding'] = torch.nn.functional.normalize( |
|
embeddings[:, :self.dimension], p=2, dim=-1 |
|
) |
|
return features |
|
|
|
def tokenize(self, texts: List[Union[str, Image.Image]], padding: str = 'longest') -> Dict[str, torch.Tensor]: |
|
processed_texts, processed_images = self._process_input(texts) |
|
|
|
inputs = self.processor( |
|
text=processed_texts, |
|
images=processed_images, |
|
videos=None, |
|
padding=padding, |
|
return_tensors='pt' |
|
) |
|
|
|
return {k: v.to(self.device) for k, v in inputs.items()} |
|
|
|
def save(self, output_path: str, safe_serialization: bool = True) -> None: |
|
self.model.save_pretrained(output_path, safe_serialization=safe_serialization) |
|
self.processor.save_pretrained(output_path) |