File size: 5,981 Bytes
6908857 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import base64
import json
import os
import math
from io import BytesIO
from typing import Any, Dict, List, Literal, Optional, Union
import requests
import torch
from PIL import Image
from torch import nn
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
class Transformer(nn.Module):
save_in_root: bool = True
def __init__(
self,
model_name_or_path: str = 'llamaindex/vdr-2b-multi-v1',
processor_name_or_path: Optional[str] = None,
max_pixels: int = 768 * 28 * 28,
min_pixels: int = 1 * 28 * 28,
dimension: int = 2048,
cache_dir: Optional[str] = None,
device: str = 'cuda:0',
**kwargs,
) -> None:
super(Transformer, self).__init__()
self.device = device
self.dimension = dimension
self.max_pixels = max_pixels
self.min_pixels = min_pixels
# Try to use flash attention if available, fallback to default attention if not
try:
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
model_name_or_path,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
device_map=device,
cache_dir=cache_dir,
**kwargs
).eval()
except (ImportError, ValueError) as e:
print(f"Flash attention not available, falling back to default attention: {e}")
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
model_name_or_path,
torch_dtype=torch.bfloat16,
device_map=device,
cache_dir=cache_dir,
**kwargs
).eval()
# Initialize processor
self.processor = AutoProcessor.from_pretrained(
processor_name_or_path or model_name_or_path,
min_pixels=min_pixels,
max_pixels=max_pixels,
cache_dir=cache_dir
)
self.model.padding_side = "left"
self.processor.tokenizer.padding_side = "left"
self.document_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>What is shown in this image?<|im_end|>\n<|endoftext|>"
self.query_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Query: %s<|im_end|>\n<|endoftext|>"
def _smart_resize(self, height: int, width: int) -> tuple[int, int]:
h_bar = max(28, self._round_by_factor(height, 28))
w_bar = max(28, self._round_by_factor(width, 28))
if h_bar * w_bar > self.max_pixels:
beta = math.sqrt((height * width) / self.max_pixels)
h_bar = self._floor_by_factor(height / beta, 28)
w_bar = self._floor_by_factor(width / beta, 28)
elif h_bar * w_bar < self.min_pixels:
beta = math.sqrt(self.min_pixels / (height * width))
h_bar = self._ceil_by_factor(height * beta, 28)
w_bar = self._ceil_by_factor(width * beta, 28)
return w_bar, h_bar
@staticmethod
def _round_by_factor(number: float, factor: int) -> int:
return round(number / factor) * factor
@staticmethod
def _ceil_by_factor(number: float, factor: int) -> int:
return math.ceil(number / factor) * factor
@staticmethod
def _floor_by_factor(number: float, factor: int) -> int:
return math.floor(number / factor) * factor
def _resize_image(self, image: Image.Image) -> Image.Image:
new_size = self._smart_resize(image.height, image.width)
return image.resize(new_size)
@staticmethod
def _decode_data_image(data_image_str: str) -> Image.Image:
header, data = data_image_str.split(',', 1)
image_data = base64.b64decode(data)
return Image.open(BytesIO(image_data))
def _process_input(self, texts: List[Union[str, Image.Image]]) -> tuple[List[str], List[Image.Image]]:
processed_texts = []
processed_images = []
dummy_image = Image.new('RGB', (56, 56))
for sample in texts:
if isinstance(sample, str):
processed_texts.append(self.query_prompt % sample)
processed_images.append(dummy_image)
elif isinstance(sample, Image.Image):
processed_texts.append(self.document_prompt)
processed_images.append(self._resize_image(sample))
return processed_texts, processed_images
def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
cache_position = torch.arange(0, features['input_ids'].shape[0])
inputs = self.model.prepare_inputs_for_generation(
**features, cache_position=cache_position, use_cache=False
)
with torch.no_grad():
output = self.model(
**inputs,
return_dict=True,
output_hidden_states=True
)
embeddings = output.hidden_states[-1][:, -1]
features['sentence_embedding'] = torch.nn.functional.normalize(
embeddings[:, :self.dimension], p=2, dim=-1
)
return features
def tokenize(self, texts: List[Union[str, Image.Image]], padding: str = 'longest') -> Dict[str, torch.Tensor]:
processed_texts, processed_images = self._process_input(texts)
inputs = self.processor(
text=processed_texts,
images=processed_images,
videos=None,
padding=padding,
return_tensors='pt'
)
return {k: v.to(self.device) for k, v in inputs.items()}
def save(self, output_path: str, safe_serialization: bool = True) -> None:
self.model.save_pretrained(output_path, safe_serialization=safe_serialization)
self.processor.save_pretrained(output_path) |