Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Qwen/Qwen2-1.5B-Instruct
bf16: true
chat_template: llama3
datasets:
- data_files:
  - 2e7e57ce2a634394_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/2e7e57ce2a634394_train_data.json
  type:
    field_instruction: questions
    field_output: accepted
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: lesso10/5a995bd3-41ad-4e44-aec0-5718bbbd2610
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 4
mlflow_experiment_name: /tmp/2e7e57ce2a634394_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: c6a125ae-7d7c-479e-98cc-f9b2fbc7c10a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c6a125ae-7d7c-479e-98cc-f9b2fbc7c10a
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null

5a995bd3-41ad-4e44-aec0-5718bbbd2610

This model is a fine-tuned version of Qwen/Qwen2-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3320

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5
  • training_steps: 50

Training results

Training Loss Epoch Step Validation Loss
1.6162 0.0030 1 1.6223
1.6479 0.0149 5 1.5353
1.4045 0.0299 10 1.4228
1.336 0.0448 15 1.3790
1.2389 0.0597 20 1.3568
1.3942 0.0746 25 1.3447
1.3812 0.0896 30 1.3382
1.5011 0.1045 35 1.3343
1.2603 0.1194 40 1.3323
1.2209 0.1343 45 1.3320
1.2792 0.1493 50 1.3320

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for lesso10/5a995bd3-41ad-4e44-aec0-5718bbbd2610

Adapter
(858)
this model