See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: microsoft/phi-1_5
bf16: true
chat_template: llama3
datasets:
- data_files:
- 468123ffe07d0b34_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/468123ffe07d0b34_train_data.json
type:
field_instruction: link
field_output: text
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso06/f313a130-15d5-4989-9066-2f00a33fcbee
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/468123ffe07d0b34_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ed95d5b7-232d-47e8-8e58-64e8ef4d9bf9
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ed95d5b7-232d-47e8-8e58-64e8ef4d9bf9
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false
f313a130-15d5-4989-9066-2f00a33fcbee
This model is a fine-tuned version of microsoft/phi-1_5 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.7335
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.7637 | 0.0001 | 1 | 2.8613 |
3.0591 | 0.0006 | 9 | 2.8398 |
2.985 | 0.0011 | 18 | 2.7885 |
2.4782 | 0.0017 | 27 | 2.7668 |
2.416 | 0.0022 | 36 | 2.7563 |
2.7725 | 0.0028 | 45 | 2.7488 |
2.8732 | 0.0034 | 54 | 2.7424 |
2.7284 | 0.0039 | 63 | 2.7385 |
2.7734 | 0.0045 | 72 | 2.7357 |
2.6899 | 0.0051 | 81 | 2.7343 |
2.8256 | 0.0056 | 90 | 2.7337 |
2.645 | 0.0062 | 99 | 2.7335 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for lesso06/f313a130-15d5-4989-9066-2f00a33fcbee
Base model
microsoft/phi-1_5