Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: JackFram/llama-68m
bf16: true
chat_template: llama3
datasets:
- data_files:
  - 2a48b17422e60c33_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/2a48b17422e60c33_train_data.json
  type:
    field_instruction: texts
    field_output: label_text
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso05/ca3a9abe-07bb-46cc-a908-f35a336af6b4
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/2a48b17422e60c33_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ca3a9abe-07bb-46cc-a908-f35a336af6b4
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ca3a9abe-07bb-46cc-a908-f35a336af6b4
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false

ca3a9abe-07bb-46cc-a908-f35a336af6b4

This model is a fine-tuned version of JackFram/llama-68m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
0.0 0.0010 1 nan
0.0 0.0093 9 nan
0.0 0.0186 18 nan
0.0 0.0279 27 nan
0.0 0.0372 36 nan
0.0 0.0464 45 nan
0.0 0.0557 54 nan
0.0 0.0650 63 nan
0.0 0.0743 72 nan
0.0 0.0836 81 nan
0.0 0.0929 90 nan
0.0 0.1022 99 nan

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for lesso05/ca3a9abe-07bb-46cc-a908-f35a336af6b4

Base model

JackFram/llama-68m
Adapter
(75)
this model