See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: scb10x/llama-3-typhoon-v1.5-8b-instruct
bf16: true
chat_template: llama3
datasets:
- data_files:
- 1cdad3506d86664d_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/1cdad3506d86664d_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso01/4c8307fe-33ad-48cc-8b20-e4c3e61b9688
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 1.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 70GiB
max_steps: 30
micro_batch_size: 4
mlflow_experiment_name: /tmp/1cdad3506d86664d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 20
save_strategy: steps
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 0c862fee-2042-414b-98c3-2b6c8e57613b
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 0c862fee-2042-414b-98c3-2b6c8e57613b
warmup_steps: 5
weight_decay: 0.01
xformers_attention: false
4c8307fe-33ad-48cc-8b20-e4c3e61b9688
This model is a fine-tuned version of scb10x/llama-3-typhoon-v1.5-8b-instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.0423
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 30
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.4745 | 0.0010 | 1 | 3.2739 |
3.6133 | 0.0040 | 4 | 3.2692 |
3.6117 | 0.0080 | 8 | 3.2433 |
2.6827 | 0.0120 | 12 | 3.1928 |
3.6631 | 0.0160 | 16 | 3.1260 |
2.559 | 0.0200 | 20 | 3.0789 |
3.2002 | 0.0240 | 24 | 3.0536 |
3.3879 | 0.0280 | 28 | 3.0423 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 10
Model tree for lesso01/4c8307fe-33ad-48cc-8b20-e4c3e61b9688
Base model
scb10x/llama-3-typhoon-v1.5-8b-instruct