|
--- |
|
license: mit |
|
base_model: microsoft/deberta-v3-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: deeva-modcat-seqclass-deberta-v1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# deeva-modcat-seqclass-deberta-v1 |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6435 |
|
- Accuracy: 0.7161 |
|
- F1: 0.2922 |
|
- Precision: 0.1808 |
|
- Recall: 0.7619 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 24 |
|
- eval_batch_size: 24 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| No log | 0.18 | 2 | 0.7148 | 0.4139 | 0.0476 | 0.0272 | 0.1905 | |
|
| No log | 0.36 | 4 | 0.7027 | 0.4835 | 0.0408 | 0.0238 | 0.1429 | |
|
| No log | 0.55 | 6 | 0.6917 | 0.5586 | 0.0474 | 0.0284 | 0.1429 | |
|
| No log | 0.73 | 8 | 0.6817 | 0.5604 | 0.0476 | 0.0286 | 0.1429 | |
|
| No log | 0.91 | 10 | 0.6727 | 0.5623 | 0.0478 | 0.0287 | 0.1429 | |
|
| No log | 1.09 | 12 | 0.6648 | 0.6374 | 0.0571 | 0.0357 | 0.1429 | |
|
| No log | 1.27 | 14 | 0.6578 | 0.6374 | 0.0571 | 0.0357 | 0.1429 | |
|
| No log | 1.45 | 16 | 0.6521 | 0.6355 | 0.0569 | 0.0355 | 0.1429 | |
|
| No log | 1.64 | 18 | 0.6477 | 0.6392 | 0.1005 | 0.0621 | 0.2619 | |
|
| No log | 1.82 | 20 | 0.6448 | 0.7015 | 0.2419 | 0.1503 | 0.6190 | |
|
| No log | 2.0 | 22 | 0.6435 | 0.7161 | 0.2922 | 0.1808 | 0.7619 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|