distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0657
  • Accuracy: {'accuracy': 0.7330827067669173}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9636 1.0 538 0.8582 {'accuracy': 0.6992481203007519}
0.7447 2.0 1076 1.0010 {'accuracy': 0.7030075187969925}
0.5876 3.0 1614 0.9129 {'accuracy': 0.7142857142857143}
0.4728 4.0 2152 1.1641 {'accuracy': 0.7255639097744361}
0.4145 5.0 2690 1.3646 {'accuracy': 0.7330827067669173}
0.2917 6.0 3228 1.4447 {'accuracy': 0.7556390977443609}
0.2485 7.0 3766 1.7574 {'accuracy': 0.7330827067669173}
0.1596 8.0 4304 1.9367 {'accuracy': 0.7330827067669173}
0.1468 9.0 4842 2.0091 {'accuracy': 0.7368421052631579}
0.1128 10.0 5380 2.0657 {'accuracy': 0.7330827067669173}

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.0
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for lennon2020/distilbert-base-uncased-lora-text-classification

Adapter
(221)
this model