RoMistral-7b-Instruct-IMat-GGUF

Llama.cpp imatrix quantization of RoMistral-7b-Instruct-IMat-GGUF

Original Model: OpenLLM-Ro/RoMistral-7b-Instruct
Original dtype: BF16 (bfloat16)
Quantized by: llama.cpp b2998
IMatrix dataset: here

Files

IMatrix

Status: βœ… Available
Link: here

Common Quants

Filename Quant type File Size Status Uses IMatrix Is Split
RoMistral-7b-Instruct.Q8_0.gguf Q8_0 7.70GB βœ… Available βšͺ No πŸ“¦ No
RoMistral-7b-Instruct.Q6_K.gguf Q6_K 5.94GB βœ… Available βšͺ No πŸ“¦ No
RoMistral-7b-Instruct.Q4_K.gguf Q4_K 4.37GB βœ… Available 🟒 Yes πŸ“¦ No
RoMistral-7b-Instruct.Q3_K.gguf Q3_K 3.52GB βœ… Available 🟒 Yes πŸ“¦ No
RoMistral-7b-Instruct.Q2_K.gguf Q2_K 2.72GB βœ… Available 🟒 Yes πŸ“¦ No

All Quants

Filename Quant type File Size Status Uses IMatrix Is Split
RoMistral-7b-Instruct.FP16.gguf F16 14.48GB βœ… Available βšͺ No πŸ“¦ No
RoMistral-7b-Instruct.BF16.gguf BF16 14.48GB βœ… Available βšͺ No πŸ“¦ No
RoMistral-7b-Instruct.Q5_K.gguf Q5_K 5.13GB βœ… Available βšͺ No πŸ“¦ No
RoMistral-7b-Instruct.Q5_K_S.gguf Q5_K_S 5.00GB βœ… Available βšͺ No πŸ“¦ No
RoMistral-7b-Instruct.Q4_K_S.gguf Q4_K_S 4.14GB βœ… Available 🟒 Yes πŸ“¦ No
RoMistral-7b-Instruct.Q3_K_L.gguf Q3_K_L 3.82GB βœ… Available 🟒 Yes πŸ“¦ No
RoMistral-7b-Instruct.Q3_K_S.gguf Q3_K_S 3.16GB βœ… Available 🟒 Yes πŸ“¦ No
RoMistral-7b-Instruct.Q2_K_S.gguf Q2_K_S 2.53GB βœ… Available 🟒 Yes πŸ“¦ No
RoMistral-7b-Instruct.IQ4_NL.gguf IQ4_NL 4.13GB βœ… Available 🟒 Yes πŸ“¦ No
RoMistral-7b-Instruct.IQ4_XS.gguf IQ4_XS 3.91GB βœ… Available 🟒 Yes πŸ“¦ No
RoMistral-7b-Instruct.IQ3_M.gguf IQ3_M 3.28GB βœ… Available 🟒 Yes πŸ“¦ No
RoMistral-7b-Instruct.IQ3_S.gguf IQ3_S 3.18GB βœ… Available 🟒 Yes πŸ“¦ No
RoMistral-7b-Instruct.IQ3_XS.gguf IQ3_XS 3.02GB βœ… Available 🟒 Yes πŸ“¦ No
RoMistral-7b-Instruct.IQ3_XXS.gguf IQ3_XXS 2.83GB βœ… Available 🟒 Yes πŸ“¦ No
RoMistral-7b-Instruct.IQ2_M.gguf IQ2_M 2.50GB βœ… Available 🟒 Yes πŸ“¦ No
RoMistral-7b-Instruct.IQ2_S.gguf IQ2_S 2.31GB βœ… Available 🟒 Yes πŸ“¦ No
RoMistral-7b-Instruct.IQ2_XS.gguf IQ2_XS 2.20GB βœ… Available 🟒 Yes πŸ“¦ No
RoMistral-7b-Instruct.IQ2_XXS.gguf IQ2_XXS 1.99GB βœ… Available 🟒 Yes πŸ“¦ No
RoMistral-7b-Instruct.IQ1_M.gguf IQ1_M 1.75GB βœ… Available 🟒 Yes πŸ“¦ No
RoMistral-7b-Instruct.IQ1_S.gguf IQ1_S 1.61GB βœ… Available 🟒 Yes πŸ“¦ No

Downloading using huggingface-cli

First, make sure you have hugginface-cli installed:

pip install -U "huggingface_hub[cli]"

Then, you can target the specific file you want:

huggingface-cli download legraphista/RoMistral-7b-Instruct-IMat-GGUF --include "RoMistral-7b-Instruct.Q8_0.gguf" --local-dir ./

If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:

huggingface-cli download legraphista/RoMistral-7b-Instruct-IMat-GGUF --include "RoMistral-7b-Instruct.Q8_0/*" --local-dir RoMistral-7b-Instruct.Q8_0
# see FAQ for merging GGUF's

FAQ

Why is the IMatrix not applied everywhere?

According to this investigation, it appears that lower quantizations are the only ones that benefit from the imatrix input (as per hellaswag results).

How do I merge a split GGUF?

  1. Make sure you have gguf-split available
  2. Locate your GGUF chunks folder (ex: RoMistral-7b-Instruct.Q8_0)
  3. Run gguf-split --merge RoMistral-7b-Instruct.Q8_0/RoMistral-7b-Instruct.Q8_0-00001-of-XXXXX.gguf RoMistral-7b-Instruct.Q8_0.gguf
    • Make sure to point gguf-split to the first chunk of the split.

Got a suggestion? Ping me @legraphista!

Downloads last month
96
GGUF
Model size
7.24B params
Architecture
llama

1-bit

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

16-bit

Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for legraphista/RoMistral-7b-Instruct-IMat-GGUF

Quantized
(4)
this model

Collection including legraphista/RoMistral-7b-Instruct-IMat-GGUF