|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_keras_callback |
|
base_model: hfl/chinese-roberta-wwm-ext |
|
model-index: |
|
- name: market_positivity |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# market_positivity |
|
|
|
This model is a fine-tuned version of [hfl/chinese-roberta-wwm-ext](https://huggingface.co/hfl/chinese-roberta-wwm-ext) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.4959 |
|
- Train Sparse Categorical Accuracy: 0.8060 |
|
- Validation Loss: 0.4484 |
|
- Validation Sparse Categorical Accuracy: 0.8187 |
|
- Epoch: 1 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch | |
|
|:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:| |
|
| 0.6595 | 0.7184 | 0.5732 | 0.7479 | 0 | |
|
| 0.4959 | 0.8060 | 0.4484 | 0.8187 | 1 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.16.0 |
|
- TensorFlow 2.7.0 |
|
- Datasets 1.18.1 |
|
- Tokenizers 0.11.0 |
|
|