|
--- |
|
license: cc-by-nc-nd-4.0 |
|
language: ko |
|
widget: |
|
- text: 피고인은 2022. 11. 14. 혈중알콜농도 0.123%의 술에 취한 상태로 승용차를 운전하였다. |
|
--- |
|
# Model information |
|
KLAID(Korean Legal Artificial Intelligence Datasets) LJP classification model based on pretrained KLUE RoBERTa-base. See more information about KLUE: [Github](https://github.com/KLUE-benchmark/KLUE) and [Paper](https://arxiv.org/abs/2105.09680) for more details. |
|
## How to use |
|
_NOTE:_ Use `BertTokenizer` instead of RobertaTokenizer and RobertaForSequenceClassification. (`AutoTokenizer` will load `BertTokenizer`) |
|
```python |
|
import numpy as np |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
tokenizer = AutoTokenizer.from_pretrained("lawcompany/KLAID_LJP_base") |
|
model = AutoModelForSequenceClassification.from_pretrained("lawcompany/KLAID_LJP_base") |
|
model.eval() |
|
input_data = tokenizer("피고인은 2022. 11. 14. 혈중알콜농도 0.123%의 술에 취한 상태로 승용차를 운전하였다.", |
|
max_length=512, |
|
return_tensors="pt") |
|
logits = model(**input_data).logits.detach().numpy() |
|
pred = np.argmax(logits) |
|
# output |
|
# 7 |
|
``` |
|
|
|
## Licensing information |
|
Copyright 2022-present [Law&Company Co. Ltd.](https://career.lawcompany.co.kr/) |
|
|
|
Licensed under the CC-BY-NC-ND-4.0 |
|
|
|
## Other Inquiries |
|
- **Email:** [[email protected]]([email protected]) |
|
- **Homepage:** [https://klaid.net/](https://klaid.net/) |