bert-finetuned-ner / README.md
laraozyegen's picture
Training complete
13041f9
|
raw
history blame
1.75 kB
metadata
base_model: samrawal/bert-base-uncased_clinical-ner
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-finetuned-ner
    results: []

bert-finetuned-ner

This model is a fine-tuned version of samrawal/bert-base-uncased_clinical-ner on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4144
  • Precision: 0.5375
  • Recall: 0.6260
  • F1: 0.5784
  • Accuracy: 0.8515

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 188 0.4339 0.5159 0.5879 0.5495 0.8408
No log 2.0 376 0.4094 0.5344 0.6332 0.5796 0.8501
0.4154 3.0 564 0.4144 0.5375 0.6260 0.5784 0.8515

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.12.1
  • Datasets 2.14.5
  • Tokenizers 0.14.1