Model description

This model is bloomz-7b1-mt model finetuned on instruct dataset cross_lingual.jsonl from laion/Anh.

How to use

anh-bloomz-7b1-mt-cross-lingual model can be loaded and used via the following code:

import re
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "laion/anh-bloomz-7b1-mt-cross-lingual"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

whitespace_tokens_map = {'\n': '<n>', '  ': '<w>'}
text = "User: Apakah kita akan bisa menyembuhkan penyakit kanker? Jawab dalam bahasa China.\n"
for k, v in whitespace_tokens_map.items():
    text = text.replace(k, v)
inputs = tokenizer(text, return_tensors="pt")
tokens = model.generate(**inputs, max_new_tokens=200, do_sample=True, top_k=40, top_p=0.9, temperature=0.2, 
                        repetition_penalty=1.2,num_return_sequences=1)
output = tokenizer.decode(tokens[0], skip_special_tokens=True)
for v in whitespace_tokens_map.values():
    output = re.sub(rf"{v}\s+(\S+)", rf"{v}\1", output)
for k, v in whitespace_tokens_map.items():
    output = output.replace(v, k)
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train laion/anh-bloomz-7b1-mt-cross-lingual