SOLAR-Platypus-10.7B-v2

Model Details

Model Developers Kyujin Han (kyujinpy)

Input Models input text only.

Output Models generate text only.

Model Architecture
SOLAR-Platypus-10.7B-v2 is an auto-regressive language model based on the Llama2 architecture.

Base Model
upstage/SOLAR-10.7B-v1.0

Training Dataset
garage-bAInd/Open-Platypus.

Notice

While training, I used Q-LoRA.
The lora_r values is 64.

Q-LoRA config

  • LoRA_r: 64
  • LoRA_alpha: 16
  • LoRA_dropout: 0.05
  • LoRA_target_modules: [gate_proj, up_proj, down_proj, q_proj, k_proj, v_proj]

Prompt

## Human:

## Assistant:  

Model Benchmark

Open leaderboard

  • Follow up as link.
Model Average ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K
SOLAR-Platypus-10.7B-v1 58.62 61.69 84.23 60.37 51.58 82.79 11.07
SOLAR-Platypus-10.7B-v2 55.25 59.39 83.57 59.93 43.15 81.45 4.02
upstage/SOLAR-10.7B-v1.0 66.04 61.95 84.60 65.48 45.04 83.66 55.50

Implementation Code

### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

repo = "kyujinpy/SOLAR-Platypus-10.7B-v2"
OpenOrca = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float16,
        device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)

Downloads last month
590
Safetensors
Model size
10.7B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kyujinpy/SOLAR-Platypus-10.7B-v2

Quantizations
5 models

Dataset used to train kyujinpy/SOLAR-Platypus-10.7B-v2

Spaces using kyujinpy/SOLAR-Platypus-10.7B-v2 6