|
--- |
|
language: |
|
- en |
|
datasets: |
|
- garage-bAInd/Open-Platypus |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
license: cc-by-nc-sa-4.0 |
|
--- |
|
|
|
# **PlatYi-34B-Llama-Q-v2** |
|
<img src='./PlatYi.png' width=256> |
|
|
|
## Model Details |
|
|
|
**Model Developers** Kyujin Han (kyujinpy) |
|
|
|
**Input** Models input text only. |
|
|
|
**Output** Models generate text only. |
|
|
|
**Model Architecture** |
|
PlatYi-34B-Llama-Q-v2 is an auto-regressive language model based on the Yi-34B transformer architecture. |
|
|
|
**Blog Link** |
|
Blog: [Coming soon...] |
|
Github: [Coming soon...] |
|
|
|
**Base Model** |
|
[chargoddard/Yi-34B-Llama](https://huggingface.co/chargoddard/Yi-34B-Llama) |
|
|
|
**Training Dataset** |
|
[garage-bAInd/Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus). |
|
|
|
## Fix some bugs |
|
- Before model, there is some mistakes. |
|
- I modified the templates and warmup_steps. |
|
|
|
## Notice |
|
While training, I used Q-LoRA. |
|
The lora_r values is 64. |
|
|
|
|
|
# **Model Benchmark** |
|
|
|
## Open leaderboard |
|
- Follow up as [link](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). |
|
|
|
| Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | |
|
| --- | --- | --- | --- | --- | --- | --- | --- | |
|
| PlatYi-34B-Llama-Q-v2 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | |
|
| PlatYi-34B-Llama-Q | 71.13 | 65.70 | 85.22 | 78.78 | 53.64 | 83.03 | 60.42 | |
|
| PlatYi-34B-Llama | 68.37 | 67.83 | 85.35 | 78.26 | 53.46 | 82.87 | 42.46 | |
|
| [Yi-34B-Llama](https://huggingface.co/chargoddard/Yi-34B-Llama) | 70.95 | 64.59 | 85.63 | 76.31 | 55.60 | 82.79 | 60.80 | |
|
| [Yi-34B](https://huggingface.co/01-ai/Yi-34B) | 69.42 | 64.59 | 85.69 | 76.35 | 56.23 | 83.03 | 50.64 | |
|
|
|
|
|
# Implementation Code |
|
```python |
|
### KO-Platypus |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
repo = "kyujinpy/PlatYi-34B-Llama-Q-v2" |
|
OpenOrca = AutoModelForCausalLM.from_pretrained( |
|
repo, |
|
return_dict=True, |
|
torch_dtype=torch.float16, |
|
device_map='auto' |
|
) |
|
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo) |
|
``` |
|
|
|
--- |