(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다
The license is cc-by-nc-sa-4.0.

🐳KOR-Orca-Platypus-13B🐳

img

Model Details

Model Developers Kyujin Han (kyujinpy)

Input Models input text only.

Output Models generate text only.

Model Architecture
Korean-OpenOrca-13B is an auto-regressive language model based on the LLaMA2 transformer architecture.

Repo Link
Github Korean-OpenOrca: 🐳Korean-OpenOrca🐳

Base Model hyunseoki/ko-en-llama2-13b

Training Dataset
I use kyujinpy/KOR-OpenOrca-Platypus-v3.
(with NEFTune.)

I use A100 GPU 40GB and COLAB, when trianing.

Model Benchmark

KO-LLM leaderboard

Model Average Ko-ARC Ko-HellaSwag Ko-MMLU Ko-TruthfulQA Ko-CommonGen V2
[KOR-Orca-Platypus-13B🐳] 46.59 42.06 53.95 42.28 43.55 51.12
KOR-Orca-Platypus-13B🐳-v2 49.48 44.03 54.43 42.23 41.64 65.05
KOR-Orca-Platypus-13B🐳-v3 48.37 43.77 54.27 42.66 38.58 62.57

Compare with Top 4 SOTA models. (update: 10/09)

Implementation Code

### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

repo = "kyujinpy/KOR-Orca-Platypus-13B-v3"
OpenOrca = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float16,
        device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)

Downloads last month
3,671
Safetensors
Model size
13B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kyujinpy/KOR-Orca-Platypus-13B-v3

Quantizations
2 models

Dataset used to train kyujinpy/KOR-Orca-Platypus-13B-v3

Spaces using kyujinpy/KOR-Orca-Platypus-13B-v3 6