|
--- |
|
language: |
|
- en |
|
- ko |
|
datasets: |
|
- kyujinpy/KOpen-platypus |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
license: cc-by-nc-4.0 |
|
--- |
|
|
|
# **Ko-Platypus2-13B** |
|
**More detail repo(Github): [KO-Platypus](https://github.com/Marker-Inc-Korea/KO-Platypus)** |
|
![KO-Platypus2-13B](./KO_platypus.png) |
|
|
|
|
|
## Model Details |
|
|
|
**Model Developers** Kyujin Han (kyujinpy) |
|
|
|
**Input** Models input text only. |
|
|
|
**Output** Models generate text only. |
|
|
|
**Model Architecture** |
|
KO-Platypus2-13B is an auto-regressive language model based on the LLaMA2 transformer architecture. |
|
|
|
**Base Model** [hyunseoki/ko-en-llama2-13b](https://huggingface.co/hyunseoki/ko-en-llama2-13b) |
|
|
|
**Training Dataset** |
|
I use [KOpen-platypus](https://huggingface.co/datasets/kyujinpy/KOpen-platypus). |
|
It is high-quality korean translation dataset about [open-platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus). |
|
|
|
I use A100 GPU 40GB and COLAB, when trianing. |
|
|
|
# **Model Benchmark** |
|
|
|
## KO-LLM leaderboard |
|
- Follow up as [Open KO-LLM LeaderBoard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard). |
|
|
|
![img](./leaderboard.png) |
|
| Model | Average |Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | |
|
| --- | --- | --- | --- | --- | --- | --- | |
|
| KO-Platypus2-13B(ours) | NaN | NaN | NaN | NaN | NaN | NaN | |
|
| [hyunseoki/ko-en-llama2-13b](https://huggingface.co/hyunseoki/ko-en-llama2-13b) | 46.68 | 42.15 | 54.23 | 38.90 | 40.74 | 57.39 | |
|
| [momo/polyglot-ko-12.8b-Chat-QLoRA-Merge](https://huggingface.co/momo/polyglot-ko-12.8b-Chat-QLoRA-Merge) | 45.71 | 35.49 | 49.93 | 25.97 | 39.43 | 77.70 | |
|
| [KoT-platypus2-7B](https://huggingface.co/kyujinpy/KoT-platypus2-7B) | 45.62 | 38.05 | 49.63 | 34.68 | 37.69 | 68.08 | |
|
| [DopeorNope/COLA3-7B](https://huggingface.co/DopeorNope/COLA3-7B) | 45.61 | 39.16 | 50.98 | 35.21 | 37.81 | 64.91 | |
|
> Compare with Top 4 SOTA models. (update: 10/03) |
|
|
|
--- |
|
# Implementation Code |
|
```python |
|
### KO-Platypus |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
repo = "kyujinpy/KO-Platypus2-13B" |
|
CoT-llama = AutoModelForCausalLM.from_pretrained( |
|
repo, |
|
return_dict=True, |
|
torch_dtype=torch.float16, |
|
device_map='auto' |
|
) |
|
CoT-llama_tokenizer = AutoTokenizer.from_pretrained(repo) |
|
``` |
|
|
|
> Readme format: [kyujinpy/KoT-platypus2-7B](https://huggingface.co/kyujinpy/KoT-platypus2-7B) |
|
|
|
--- |