wav2vec2-base-960h-EMOPIA-10sec-full

This model is a fine-tuned version of facebook/wav2vec2-base-960h on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2928
  • Accuracy: 0.8488

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2057 1.0 2248 1.4522 0.4502
1.3873 2.0 4496 1.4503 0.6423
1.4246 3.0 6744 1.6165 0.6673
1.3335 4.0 8992 1.4786 0.7206
1.251 5.0 11240 1.6414 0.6886
1.1859 6.0 13488 1.3300 0.7544
1.1132 7.0 15736 1.3665 0.7509
1.0189 8.0 17984 1.6665 0.7153
0.9807 9.0 20232 1.1175 0.7794
0.8786 10.0 22480 1.1786 0.7883
0.8677 11.0 24728 1.1295 0.7811
0.7554 12.0 26976 1.1185 0.8185
0.7196 13.0 29224 1.4067 0.7847
0.692 14.0 31472 1.1175 0.8203
0.6276 15.0 33720 1.4490 0.7883
0.6083 16.0 35968 1.0983 0.8345
0.5204 17.0 38216 1.1814 0.8256
0.5197 18.0 40464 1.2945 0.8167
0.488 19.0 42712 1.4494 0.8025
0.4714 20.0 44960 1.3499 0.8114
0.3641 21.0 47208 1.2525 0.8381
0.3877 22.0 49456 1.2610 0.8381
0.3253 23.0 51704 1.3913 0.8274
0.2978 24.0 53952 1.2990 0.8416
0.3238 25.0 56200 1.4328 0.8274
0.2669 26.0 58448 1.3079 0.8327
0.2521 27.0 60696 1.3250 0.8399
0.2632 28.0 62944 1.3357 0.8416
0.2655 29.0 65192 1.2957 0.8434
0.2379 30.0 67440 1.2928 0.8488

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.1+cu118
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
4
Safetensors
Model size
95M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for kurosekurose/wav2vec2-base-960h-EMOPIA-10sec-full

Finetuned
(122)
this model