Whisper Small CGN

This model is a fine-tuned version of openai/whisper-small on the kul-speech-lab/CGN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3386
  • Wer: 15.1972

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 15000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1967 1.01 1000 0.4085 21.8459
0.1355 2.03 2000 0.3752 18.6212
0.2952 3.04 3000 0.3535 18.5841
0.1876 4.05 4000 0.3464 17.5097
0.1037 6.01 5000 0.3396 16.7360
0.0473 7.02 6000 0.3526 16.4131
0.1605 8.04 7000 0.3284 16.4012
0.0537 9.05 8000 0.3386 15.9454
0.0928 11.01 9000 0.3315 15.9568
0.0144 12.02 10000 0.3532 15.5387
0.0267 13.04 11000 0.3261 15.7577
0.0936 14.05 12000 0.3155 15.3380
0.0825 16.01 13000 0.3198 15.2653
0.0498 17.02 14000 0.3386 15.1972
0.0338 18.03 15000 0.3413 15.1972

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2

Whisper small model finetuned on Flemish part of Corpus Gesproken Nederlands (CGN).

Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results