system's picture
system HF staff
Commit From AutoTrain
c335af6
metadata
tags: autotrain
language: en
widget:
  - text: I love AutoTrain 🤗
datasets:
  - ktangri/autotrain-data-financial-sentiment
co2_eq_emissions: 0.007501354635994803

Model Trained Using AutoTrain

  • Problem type: Multi-class Classification
  • Model ID: 765323474
  • CO2 Emissions (in grams): 0.007501354635994803

Validation Metrics

  • Loss: 0.0447433702647686
  • Accuracy: 0.9823788546255506
  • Macro F1: 0.974405452470854
  • Micro F1: 0.9823788546255506
  • Weighted F1: 0.9823043153179869
  • Macro Precision: 0.978208375548801
  • Micro Precision: 0.9823788546255506
  • Weighted Precision: 0.9823204968555985
  • Macro Recall: 0.9707159078140736
  • Micro Recall: 0.9823788546255506
  • Weighted Recall: 0.9823788546255506

Usage

You can use cURL to access this model:

$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' /static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2Fktangri%2Fautotrain-financial-sentiment-765323474

Or Python API:

from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("ktangri/autotrain-financial-sentiment-765323474", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("ktangri/autotrain-financial-sentiment-765323474", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)