Description
This repo contains GGUF format model files for dolphin-2.9.4-llama3.1-8b.
Files Provided
Name | Quant | Bits | File Size | Remark |
---|---|---|---|---|
dolphin-2.9.4-llama3.1-8b.Q2_K.gguf | Q2_K | 2 | 3.18 GB | 2.96G, +3.5199 ppl @ Llama-3-8B |
dolphin-2.9.4-llama3.1-8b.Q3_K.gguf | Q3_K | 3 | 4.02 GB | 3.74G, +0.6569 ppl @ Llama-3-8B |
dolphin-2.9.4-llama3.1-8b.Q4_0.gguf | Q4_0 | 4 | 4.66 GB | 4.34G, +0.4685 ppl @ Llama-3-8B |
dolphin-2.9.4-llama3.1-8b.Q4_K.gguf | Q4_K | 4 | 4.92 GB | 4.58G, +0.1754 ppl @ Llama-3-8B |
dolphin-2.9.4-llama3.1-8b.Q5_K.gguf | Q5_K | 5 | 5.73 GB | 5.33G, +0.0569 ppl @ Llama-3-8B |
dolphin-2.9.4-llama3.1-8b.Q6_K.gguf | Q6_K | 6 | 6.60 GB | 6.14G, +0.0217 ppl @ Llama-3-8B |
dolphin-2.9.4-llama3.1-8b.Q8_0.gguf | Q8_0 | 8 | 8.54 GB | 7.96G, +0.0026 ppl @ Llama-3-8B |
Parameters
path | type | architecture | rope_theta | sliding_win | max_pos_embed |
---|---|---|---|---|---|
cognitivecomputations/dolphin-2.9.4-llama3.1-8b | llama | LlamaForCausalLM | 500000.0 | null | 131072 |
Original Model Card
Dolphin 2.9.4 Llama 3.1 8b π¬
Curated and trained by Eric Hartford and Cognitive Computations
Discord: https://discord.gg/h3K4XGj2RH
Our appreciation for the sponsors of Dolphin 2.9.4:
- Crusoe Cloud - provided excellent on-demand 8xL40S node
This model is based on Meta Llama 3.1 8b, and is governed by the Llama 3.1 license.
The base model has 128K context, and our finetuning used 8192 sequence length.
Dolphin 2.9.4 uses ChatML prompt template format.
example:
<|im_start|>system
You are Dolphin, a helpful AI assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
Dolphin-2.9.4 has a variety of instruction following, conversational, and coding skills. It also has agentic abilities and supports function calling. It is especially trained to obey the system prompt, and follow instructions in many languages.
Dolphin is uncensored. We have filtered the dataset to remove alignment and bias. This makes the model more compliant. You are advised to implement your own alignment layer before exposing the model as a service. It will be highly compliant with any requests, even unethical ones. Please read my blog post about uncensored models. https://erichartford.com/uncensored-models You are responsible for any content you create using this model. Enjoy responsibly.
Evals
hf (pretrained=/workspace/axolotl/dolphin-2.9.4-llama3.1-8b-hf,dtype=bfloat16), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: auto (4)
| Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr|
|-----------------------------------------------------------|-------|------|-----:|-----------------------|---|-----:|---|------|
|leaderboard |N/A |none | 0|acc |β |0.2926|Β± |0.0041|
| | |none | 0|acc_norm |β |0.4513|Β± |0.0053|
| | |none | 0|exact_match |β |0.0982|Β± |0.0079|
| | |none | 0|inst_level_loose_acc |β |0.3825|Β± |N/A |
| | |none | 0|inst_level_strict_acc |β |0.3597|Β± |N/A |
| | |none | 0|prompt_level_loose_acc |β |0.2421|Β± |0.0184|
| | |none | 0|prompt_level_strict_acc|β |0.2181|Β± |0.0178|
| - leaderboard_bbh |N/A |none | 3|acc_norm |β |0.4931|Β± |0.0061|
| - leaderboard_bbh_boolean_expressions | 0|none | 3|acc_norm |β |0.8000|Β± |0.0253|
| - leaderboard_bbh_causal_judgement | 0|none | 3|acc_norm |β |0.5615|Β± |0.0364|
| - leaderboard_bbh_date_understanding | 0|none | 3|acc_norm |β |0.4520|Β± |0.0315|
| - leaderboard_bbh_disambiguation_qa | 0|none | 3|acc_norm |β |0.6640|Β± |0.0299|
| - leaderboard_bbh_formal_fallacies | 0|none | 3|acc_norm |β |0.5600|Β± |0.0315|
| - leaderboard_bbh_geometric_shapes | 0|none | 3|acc_norm |β |0.3640|Β± |0.0305|
| - leaderboard_bbh_hyperbaton | 0|none | 3|acc_norm |β |0.6320|Β± |0.0306|
| - leaderboard_bbh_logical_deduction_five_objects | 0|none | 3|acc_norm |β |0.4600|Β± |0.0316|
| - leaderboard_bbh_logical_deduction_seven_objects | 0|none | 3|acc_norm |β |0.4360|Β± |0.0314|
| - leaderboard_bbh_logical_deduction_three_objects | 0|none | 3|acc_norm |β |0.6160|Β± |0.0308|
| - leaderboard_bbh_movie_recommendation | 0|none | 3|acc_norm |β |0.7880|Β± |0.0259|
| - leaderboard_bbh_navigate | 0|none | 3|acc_norm |β |0.5200|Β± |0.0317|
| - leaderboard_bbh_object_counting | 0|none | 3|acc_norm |β |0.4520|Β± |0.0315|
| - leaderboard_bbh_penguins_in_a_table | 0|none | 3|acc_norm |β |0.5205|Β± |0.0415|
| - leaderboard_bbh_reasoning_about_colored_objects | 0|none | 3|acc_norm |β |0.5120|Β± |0.0317|
| - leaderboard_bbh_ruin_names | 0|none | 3|acc_norm |β |0.6320|Β± |0.0306|
| - leaderboard_bbh_salient_translation_error_detection | 0|none | 3|acc_norm |β |0.4320|Β± |0.0314|
| - leaderboard_bbh_snarks | 0|none | 3|acc_norm |β |0.5843|Β± |0.0370|
| - leaderboard_bbh_sports_understanding | 0|none | 3|acc_norm |β |0.7040|Β± |0.0289|
| - leaderboard_bbh_temporal_sequences | 0|none | 3|acc_norm |β |0.1440|Β± |0.0222|
| - leaderboard_bbh_tracking_shuffled_objects_five_objects | 0|none | 3|acc_norm |β |0.1560|Β± |0.0230|
| - leaderboard_bbh_tracking_shuffled_objects_seven_objects| 0|none | 3|acc_norm |β |0.1320|Β± |0.0215|
| - leaderboard_bbh_tracking_shuffled_objects_three_objects| 0|none | 3|acc_norm |β |0.2840|Β± |0.0286|
| - leaderboard_bbh_web_of_lies | 0|none | 3|acc_norm |β |0.4840|Β± |0.0317|
| - leaderboard_gpqa |N/A |none | 0|acc_norm |β |0.2903|Β± |0.0132|
| - leaderboard_gpqa_diamond | 1|none | 0|acc_norm |β |0.2980|Β± |0.0326|
| - leaderboard_gpqa_extended | 1|none | 0|acc_norm |β |0.2839|Β± |0.0193|
| - leaderboard_gpqa_main | 1|none | 0|acc_norm |β |0.2946|Β± |0.0216|
| - leaderboard_ifeval | 2|none | 0|inst_level_loose_acc |β |0.3825|Β± |N/A |
| | |none | 0|inst_level_strict_acc |β |0.3597|Β± |N/A |
| | |none | 0|prompt_level_loose_acc |β |0.2421|Β± |0.0184|
| | |none | 0|prompt_level_strict_acc|β |0.2181|Β± |0.0178|
| - leaderboard_math_algebra_hard | 1|none | 4|exact_match |β |0.1596|Β± |0.0209|
| - leaderboard_math_counting_and_prob_hard | 1|none | 4|exact_match |β |0.0488|Β± |0.0195|
| - leaderboard_math_geometry_hard | 1|none | 4|exact_match |β |0.0530|Β± |0.0196|
| - leaderboard_math_hard |N/A |none | 4|exact_match |β |0.0982|Β± |0.0079|
| - leaderboard_math_intermediate_algebra_hard | 1|none | 4|exact_match |β |0.0143|Β± |0.0071|
| - leaderboard_math_num_theory_hard | 1|none | 4|exact_match |β |0.0455|Β± |0.0168|
| - leaderboard_math_prealgebra_hard | 1|none | 4|exact_match |β |0.2591|Β± |0.0316|
| - leaderboard_math_precalculus_hard | 1|none | 4|exact_match |β |0.0519|Β± |0.0192|
| - leaderboard_mmlu_pro | 0.1|none | 5|acc |β |0.2926|Β± |0.0041|
| - leaderboard_musr |N/A |none | 0|acc_norm |β |0.3862|Β± |0.0173|
| - leaderboard_musr_murder_mysteries | 1|none | 0|acc_norm |β |0.5280|Β± |0.0316|
| - leaderboard_musr_object_placements | 1|none | 0|acc_norm |β |0.3594|Β± |0.0300|
| - leaderboard_musr_team_allocation | 1|none | 0|acc_norm |β |0.2720|Β± |0.0282|
| Groups |Version|Filter|n-shot| Metric | |Value | |Stderr|
|------------------------|-------|------|-----:|-----------------------|---|-----:|---|------|
|leaderboard |N/A |none | 0|acc |β |0.2926|Β± |0.0041|
| | |none | 0|acc_norm |β |0.4513|Β± |0.0053|
| | |none | 0|exact_match |β |0.0982|Β± |0.0079|
| | |none | 0|inst_level_loose_acc |β |0.3825|Β± |N/A |
| | |none | 0|inst_level_strict_acc |β |0.3597|Β± |N/A |
| | |none | 0|prompt_level_loose_acc |β |0.2421|Β± |0.0184|
| | |none | 0|prompt_level_strict_acc|β |0.2181|Β± |0.0178|
| - leaderboard_bbh |N/A |none | 3|acc_norm |β |0.4931|Β± |0.0061|
| - leaderboard_gpqa |N/A |none | 0|acc_norm |β |0.2903|Β± |0.0132|
| - leaderboard_math_hard|N/A |none | 4|exact_match |β |0.0982|Β± |0.0079|
| - leaderboard_musr |N/A |none | 0|acc_norm |β |0.3862|Β± |0.0173|
See axolotl config
axolotl version: 0.4.1
base_model: meta-llama/Meta-Llama-3.1-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
# load_in_4bit: true
strict: false
datasets:
- path: /workspace/datasets/dolphin-2.9.4/dolphin201-sharegpt2.jsonl
type: sharegpt
conversation: chatml
chat_template: chatml
# adapter: qlora
# lora_r: 128
# lora_alpha: 16
# lora_modules_to_save: [embed_tokens, lm_head]
# lora_dropout: 0.05
# lora_target_linear: true
unfrozen_parameters:
- input_layernorm
- model.norm
- post_attention_layernorm
- self_attn.rotary_emb
- ^lm_head.weight$
- ^model.embed_tokens.weight$
# mlp.down_proj layers
- model.layers.1.mlp.down_proj
- model.layers.0.mlp.down_proj
- model.layers.30.mlp.down_proj
- model.layers.2.mlp.down_proj
- model.layers.21.mlp.down_proj
- model.layers.22.mlp.down_proj
- model.layers.29.mlp.down_proj
- model.layers.5.mlp.down_proj
- model.layers.4.mlp.down_proj
- model.layers.20.mlp.down_proj
- model.layers.23.mlp.down_proj
- model.layers.19.mlp.down_proj
- model.layers.3.mlp.down_proj
- model.layers.17.mlp.down_proj
- model.layers.6.mlp.down_proj
- model.layers.31.mlp.down_proj
# mlp.up_proj layers
- model.layers.4.mlp.up_proj
- model.layers.3.mlp.up_proj
- model.layers.0.mlp.up_proj
- model.layers.5.mlp.up_proj
- model.layers.7.mlp.up_proj
- model.layers.6.mlp.up_proj
- model.layers.2.mlp.up_proj
- model.layers.1.mlp.up_proj
- model.layers.8.mlp.up_proj
- model.layers.12.mlp.up_proj
- model.layers.14.mlp.up_proj
- model.layers.9.mlp.up_proj
- model.layers.15.mlp.up_proj
- model.layers.17.mlp.up_proj
- model.layers.13.mlp.up_proj
- model.layers.19.mlp.up_proj
# self_attn.k_proj layers
- model.layers.29.self_attn.k_proj
- model.layers.25.self_attn.k_proj
- model.layers.23.self_attn.k_proj
- model.layers.28.self_attn.k_proj
- model.layers.21.self_attn.k_proj
- model.layers.19.self_attn.k_proj
- model.layers.22.self_attn.k_proj
- model.layers.20.self_attn.k_proj
- model.layers.24.self_attn.k_proj
- model.layers.31.self_attn.k_proj
- model.layers.27.self_attn.k_proj
- model.layers.26.self_attn.k_proj
- model.layers.17.self_attn.k_proj
- model.layers.11.self_attn.k_proj
- model.layers.18.self_attn.k_proj
- model.layers.14.self_attn.k_proj
# self_attn.o_proj layers
- model.layers.14.self_attn.o_proj
- model.layers.7.self_attn.o_proj
- model.layers.5.self_attn.o_proj
- model.layers.11.self_attn.o_proj
- model.layers.6.self_attn.o_proj
- model.layers.24.self_attn.o_proj
- model.layers.9.self_attn.o_proj
- model.layers.13.self_attn.o_proj
- model.layers.10.self_attn.o_proj
- model.layers.12.self_attn.o_proj
- model.layers.8.self_attn.o_proj
- model.layers.25.self_attn.o_proj
- model.layers.21.self_attn.o_proj
- model.layers.23.self_attn.o_proj
- model.layers.15.self_attn.o_proj
- model.layers.16.self_attn.o_proj
# self_attn.q_proj layers
- model.layers.8.self_attn.q_proj
- model.layers.13.self_attn.q_proj
- model.layers.9.self_attn.q_proj
- model.layers.14.self_attn.q_proj
- model.layers.10.self_attn.q_proj
- model.layers.11.self_attn.q_proj
- model.layers.0.self_attn.q_proj
- model.layers.15.self_attn.q_proj
- model.layers.1.self_attn.q_proj
- model.layers.6.self_attn.q_proj
- model.layers.5.self_attn.q_proj
- model.layers.7.self_attn.q_proj
- model.layers.12.self_attn.q_proj
- model.layers.16.self_attn.q_proj
- model.layers.17.self_attn.q_proj
- model.layers.26.self_attn.q_proj
# self_attn.v_proj layers
- model.layers.26.self_attn.v_proj
- model.layers.17.self_attn.v_proj
- model.layers.3.self_attn.v_proj
- model.layers.28.self_attn.v_proj
- model.layers.29.self_attn.v_proj
- model.layers.21.self_attn.v_proj
- model.layers.15.self_attn.v_proj
- model.layers.16.self_attn.v_proj
- model.layers.20.self_attn.v_proj
- model.layers.25.self_attn.v_proj
- model.layers.6.self_attn.v_proj
- model.layers.23.self_attn.v_proj
- model.layers.4.self_attn.v_proj
- model.layers.1.self_attn.v_proj
- model.layers.22.self_attn.v_proj
- model.layers.14.self_attn.v_proj
# mlp.gate_proj layers
- model.layers.1.mlp.gate_proj
- model.layers.2.mlp.gate_proj
- model.layers.3.mlp.gate_proj
- model.layers.4.mlp.gate_proj
- model.layers.0.mlp.gate_proj
- model.layers.25.mlp.gate_proj
- model.layers.26.mlp.gate_proj
- model.layers.5.mlp.gate_proj
- model.layers.24.mlp.gate_proj
- model.layers.28.mlp.gate_proj
- model.layers.23.mlp.gate_proj
- model.layers.27.mlp.gate_proj
- model.layers.21.mlp.gate_proj
- model.layers.22.mlp.gate_proj
- model.layers.29.mlp.gate_proj
- model.layers.20.mlp.gate_proj
dataset_prepared_path: /workspace/axolotl/dolph-2.9.4-nemo-prepared
val_set_size: 0.01
output_dir: /workspace/axolotl/dolphin-2.9.4-llama3.1-8b
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
wandb_project: dolphin-2.9.4-llama3.1-8b
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 16
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 5e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32:
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
# evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
save_total_limit: 2
save_steps:
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.1
special_tokens:
eos_token: "<|im_end|>"
bos_token: "<|begin_of_text|>"
pad_token: "<|finetune_right_pad_id|>"
tokens:
- "<|im_start|>"
# fsdp:
# - full_shard
# - auto_wrap
# fsdp_config:
# fsdp_limit_all_gathers: true
# fsdp_sync_module_states: true
# fsdp_offload_params: true
# fsdp_use_orig_params: false
# fsdp_cpu_ram_efficient_loading: true
# fsdp_transformer_layer_cls_to_wrap: MixtralSparseMoeBlock
# fsdp_state_dict_type: FULL_STATE_DICT
# fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
# fsdp_sharding_strategy: FULL_SHARD
# fsdp_forward_prefetch: false
# fsdp_backward_prefetch: BACKWARD_PRE
workspace/axolotl/dolphin-2.9.4-llama3.1-8b
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5655
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 16
- total_train_batch_size: 256
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.5837 | 1.0180 | 1161 | 0.5814 |
0.5525 | 2.0179 | 2322 | 0.5671 |
0.5514 | 2.9624 | 3420 | 0.5655 |
Framework versions
- Transformers 4.44.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 35
Model tree for koesn/dolphin-2.9.4-llama3.1-8b-GGUF
Base model
meta-llama/Llama-3.1-8B