distilbert-base-uncased-finetuned-clinc
This model is a fine-tuned version of distilbert-base-uncased on the clinc_oos dataset. It achieves the following results on the evaluation set:
- Loss: 0.4448
- Accuracy: 0.9352
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 477 | 2.7396 | 0.7597 |
3.9584 | 2.0 | 954 | 1.2422 | 0.8842 |
1.8774 | 3.0 | 1431 | 0.6816 | 0.9206 |
0.8644 | 4.0 | 1908 | 0.4935 | 0.9306 |
0.4947 | 5.0 | 2385 | 0.4448 | 0.9352 |
Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for kkt4828/distilbert-base-uncased-finetuned-clinc
Base model
distilbert/distilbert-base-uncasedDataset used to train kkt4828/distilbert-base-uncased-finetuned-clinc
Evaluation results
- Accuracy on clinc_oosvalidation set self-reported0.935