fine tune with openfda
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("kivanc/test")
# Run inference
sentences = [
'The pH range of TissueBlue 0.025% Solution is between 7.3 and 7.6.',
'The pH range of the solution is 4.5 to 7.5.',
'I.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
dev-eva
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 1.0 |
dot_accuracy | 0.0 |
manhattan_accuracy | 1.0 |
euclidean_accuracy | 1.0 |
max_accuracy | 1.0 |
Triplet
- Dataset:
test-eva
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 1.0 |
dot_accuracy | 0.0 |
manhattan_accuracy | 1.0 |
euclidean_accuracy | 1.0 |
max_accuracy | 1.0 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 5,344 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 3 tokens
- mean: 41.73 tokens
- max: 255 tokens
- min: 3 tokens
- mean: 42.27 tokens
- max: 256 tokens
- min: 3 tokens
- mean: 24.11 tokens
- max: 157 tokens
- Samples:
anchor positive negative Table 6– Physical Decay Chart for Technetium-99m, Half-Life 6.02 Hours Hours Fraction Remaining Hours Fraction Remaining 0* 1.000 7 0.447 1 0.891 8 0.398 2 0.794 9 0.355 3 0.708 10 0.316 4 0.631 11 0.282 5 0.562 12 0.251 6 0.501 *Calibration Time
Table 9 Physical Decay Chart of Technetium 99m Tc, Half Life: 6 Hours *Calibration Time Hours Fraction Remaining Hours Fraction Remaining 0 * 1.000 5 0.562 1 0.891 6 0.501 2 0.794 8 0.398 3 0.708 10 0.316 4 0.631 12 0.251
-Gently massage into affected areas.
The compound has the empirical formula C 43 H 68 ClNO 11 and the molecular weight of 810.47.
Its molecular formula is C 17 H 16 ClNO⋅C 4 H 4 O 4 and its molecular weight is 401.84 (free base: 285.8).
Intravesical instillation for the treatment of interstitial cystitis.
Adempas 1, 1.5, 2 and 2.5 mg tablets contain, in addition, ferric oxide yellow.
Adempas 2 and 2.5 mg tablets contain, in addition, ferric oxide red.
Higher temperatures lead to greater losses.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 1,336 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 3 tokens
- mean: 38.62 tokens
- max: 256 tokens
- min: 3 tokens
- mean: 38.35 tokens
- max: 256 tokens
- min: 3 tokens
- mean: 24.91 tokens
- max: 189 tokens
- Samples:
anchor positive negative Sacituzumab govitecan-hziy contains on average 7 to 8 molecules of SN-38 per antibody molecule.
An average of 2.3 molecules of SG3249 are attached to each antibody molecule.
Over this time period, blood pressure returns gradually to pretreatment levels.
11 DESCRIPTION INVOKANA ® (canagliflozin) contains canagliflozin, an inhibitor of SGLT2, the transporter responsible for reabsorbing the majority of glucose filtered by the kidney.
Canagliflozin, the active ingredient of INVOKANA, is chemically known as (1 S )-1,5-anhydro-1-[3-[[5-(4-fluorophenyl)-2-thienyl]methyl]-4-methylphenyl]-D-glucitol hemihydrate and its molecular formula and weight are C 24 H 25 FO 5 S∙1/2 H 2 O and 453.53, respectively.
1 Evaluated Nuclear Structure Data File of the Oak Ridge Nuclear Data Project DOE (1985).
Its molecular formula is C 25 H 37 NO 4 .
Its molecular formula is C 27 H 41 NO 8 .
GOOD LENS CARE PRACTICES: ☞ Always wash and rinse your hands before you handle your lenses.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 10warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | dev-eva_max_accuracy | test-eva_max_accuracy |
---|---|---|---|---|---|
0 | 0 | - | - | 1.0 | - |
0.2994 | 100 | 0.0288 | 0.0080 | 1.0 | - |
0.5988 | 200 | 0.0297 | 0.0089 | 1.0 | - |
0.8982 | 300 | 0.0283 | 0.0103 | 1.0 | - |
1.1976 | 400 | 0.0021 | 0.0111 | 1.0 | - |
1.4970 | 500 | 0.0008 | 0.0137 | 1.0 | - |
1.7964 | 600 | 0.0 | 0.0137 | 1.0 | - |
1.2754 | 700 | 0.0198 | 0.0109 | 1.0 | - |
1.5749 | 800 | 0.0239 | 0.0165 | 1.0 | - |
1.8743 | 900 | 0.0118 | 0.0133 | 1.0 | - |
2.1737 | 1000 | 0.0012 | 0.0117 | 1.0 | - |
2.4731 | 1100 | 0.0001 | 0.0116 | 1.0 | - |
2.7725 | 1200 | 0.0 | 0.0116 | 1.0 | - |
2.2515 | 1300 | 0.0041 | 0.0120 | 1.0 | - |
2.5509 | 1400 | 0.0063 | 0.0102 | 1.0 | - |
2.8503 | 1500 | 0.0039 | 0.0154 | 1.0 | - |
3.1497 | 1600 | 0.0008 | 0.0113 | 1.0 | - |
3.4491 | 1700 | 0.0 | 0.0110 | 1.0 | - |
3.7485 | 1800 | 0.0 | 0.0110 | 1.0 | - |
3.2275 | 1900 | 0.0017 | 0.0122 | 1.0 | - |
3.5269 | 2000 | 0.0023 | 0.0119 | 1.0 | - |
3.8263 | 2100 | 0.0019 | 0.0123 | 1.0 | - |
4.1257 | 2200 | 0.0006 | 0.0125 | 1.0 | - |
4.4251 | 2300 | 0.0 | 0.0120 | 1.0 | - |
4.7246 | 2400 | 0.0 | 0.0120 | 1.0 | - |
4.2036 | 2500 | 0.0009 | 0.0125 | 1.0 | - |
4.5030 | 2600 | 0.0012 | 0.0115 | 1.0 | - |
4.8024 | 2700 | 0.0013 | 0.0125 | 1.0 | - |
5.1018 | 2800 | 0.0004 | 0.0120 | 1.0 | - |
5.4012 | 2900 | 0.0 | 0.0118 | 1.0 | - |
5.7006 | 3000 | 0.0 | 0.0118 | 1.0 | - |
5.1796 | 3100 | 0.0006 | 0.0120 | 1.0 | - |
5.4790 | 3200 | 0.001 | 0.0118 | 1.0 | - |
5.7784 | 3300 | 0.001 | 0.0118 | 1.0 | - |
5.8982 | 3340 | - | - | - | 1.0 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for kivanc/test
Base model
sentence-transformers/all-MiniLM-L6-v2Evaluation results
- Cosine Accuracy on dev evaself-reported1.000
- Dot Accuracy on dev evaself-reported0.000
- Manhattan Accuracy on dev evaself-reported1.000
- Euclidean Accuracy on dev evaself-reported1.000
- Max Accuracy on dev evaself-reported1.000
- Cosine Accuracy on test evaself-reported1.000
- Dot Accuracy on test evaself-reported0.000
- Manhattan Accuracy on test evaself-reported1.000
- Euclidean Accuracy on test evaself-reported1.000
- Max Accuracy on test evaself-reported1.000