elishowk's picture
Automatic correction of README.md metadata for keys. Contact [email protected] for any question
66b7d2e
---
language:
- en
tags:
- question-answering
- emotion-detection
- summarisation
license: apache-2.0
datasets:
- coqa
- squad_v2
- go_emotions
- cnn_dailymail
metrics:
- f1
pipeline_tag: text2text-generation
widget:
- text: 'q: Who is Elon Musk? a: an entrepreneur q: When was he born? c: Elon Musk
is an entrepreneur born in 1971. </s>'
- text: 'emotion: I hope this works! </s>'
---
# T5 Base with QA + Summary + Emotion
## Dependencies
Requires transformers>=4.0.0
## Description
This model was finetuned on the CoQa, Squad 2, GoEmotions and CNN/DailyMail.
It achieves a score of **F1 79.5** on the Squad 2 dev set and a score of **F1 70.6** on the CoQa dev set.
Summarisation and emotion detection has not been evaluated yet.
## Usage
### Question answering
#### With Transformers
```python
from transformers import T5ForConditionalGeneration, T5Tokenizer
model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
tokenizer = T5Tokenizer.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
def get_answer(question, prev_qa, context):
input_text = [f"q: {qa[0]} a: {qa[1]}" for qa in prev_qa]
input_text.append(f"q: {question}")
input_text.append(f"c: {context}")
input_text = " ".join(input_text)
features = tokenizer([input_text], return_tensors='pt')
tokens = model.generate(input_ids=features['input_ids'],
attention_mask=features['attention_mask'], max_length=64)
return tokenizer.decode(tokens[0], skip_special_tokens=True)
print(get_answer("Why is the moon yellow?", "I'm not entirely sure why the moon is yellow.")) # unknown
context = "Elon Musk left OpenAI to avoid possible future conflicts with his role as CEO of Tesla."
print(get_answer("Why not?", [("Does Elon Musk still work with OpenAI", "No")], context)) # to avoid possible future conflicts with his role as CEO of Tesla
```
#### With Kiri
```python
from kiri.models import T5QASummaryEmotion
context = "Elon Musk left OpenAI to avoid possible future conflicts with his role as CEO of Tesla."
prev_qa = [("Does Elon Musk still work with OpenAI", "No")]
model = T5QASummaryEmotion()
# Leave prev_qa blank for non conversational question-answering
model.qa("Why not?", context, prev_qa=prev_qa)
> "to avoid possible future conflicts with his role as CEO of Tesla"
```
### Summarisation
#### With Transformers
```python
from transformers import T5ForConditionalGeneration, T5Tokenizer
model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
tokenizer = T5Tokenizer.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
def summary(context):
input_text = f"summarize: {context}"
features = tokenizer([input_text], return_tensors='pt')
tokens = model.generate(input_ids=features['input_ids'],
attention_mask=features['attention_mask'], max_length=64)
return tokenizer.decode(tokens[0], skip_special_tokens=True)
```
#### With Kiri
```python
from kiri.models import T5QASummaryEmotion
model = T5QASummaryEmotion()
model.summarise("Long text to summarise")
> "Short summary of long text"
```
### Emotion detection
#### With Transformers
```python
from transformers import T5ForConditionalGeneration, T5Tokenizer
model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
tokenizer = T5Tokenizer.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
def emotion(context):
input_text = f"emotion: {context}"
features = tokenizer([input_text], return_tensors='pt')
tokens = model.generate(input_ids=features['input_ids'],
attention_mask=features['attention_mask'], max_length=64)
return tokenizer.decode(tokens[0], skip_special_tokens=True)
```
#### With Kiri
```python
from kiri.models import T5QASummaryEmotion
model = T5QASummaryEmotion()
model.emotion("I hope this works!")
> "optimism"
```
## About us
Kiri makes using state-of-the-art models easy, accessible and scalable.
[Website](https://kiri.ai) | [Natural Language Engine](https://github.com/kiri-ai/kiri)