TinyLlama-1.1B-Hinglish-LORA-v1.0 model

  • Developed by: Kiran Kunapuli
  • License: apache-2.0
  • Finetuned from model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
  • Model config:
      model = FastLanguageModel.get_peft_model(
      model,
      r = 64, 
      target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
                        "gate_proj", "up_proj", "down_proj",],
      lora_alpha = 128,
      lora_dropout = 0, 
      bias = "none",   
      use_gradient_checkpointing = True, 
      random_state = 42,
      use_rslora = True,  
      loftq_config = None, 
      )
    
  • Training parameters:
      trainer = SFTTrainer(
      model = model,
      tokenizer = tokenizer,
      train_dataset = dataset,
      dataset_text_field = "text",
      max_seq_length = max_seq_length,
      dataset_num_proc = 2,
      packing = True, 
      args = TrainingArguments(
          per_device_train_batch_size = 12,
          gradient_accumulation_steps = 16,
          warmup_ratio = 0.1,
          num_train_epochs = 1,
          learning_rate = 2e-4,
          fp16 = not torch.cuda.is_bf16_supported(),
          bf16 = torch.cuda.is_bf16_supported(),
          logging_steps = 1,
          optim = "paged_adamw_32bit",
          weight_decay = 0.001,
          lr_scheduler_type = "cosine",
          seed = 42,
          output_dir = "outputs",
          report_to = "wandb",
        ),
      )
    
  • Training details:
    ==((====))==  Unsloth - 2x faster free finetuning | Num GPUs = 1
       \\   /|    Num examples = 15,464 | Num Epochs = 1
    O^O/ \_/ \    Batch size per device = 12 | Gradient Accumulation steps = 16
    \        /    Total batch size = 192 | Total steps = 80
     "-____-"     Number of trainable parameters = 50,462,720
    
    GPU = NVIDIA GeForce RTX 3090. Max memory = 24.0 GB.
    Total time taken for 1 epoch - 2h:35m:28s
    9443.5288 seconds used for training.
    157.39 minutes used for training.
    Peak reserved memory = 17.641 GB.
    Peak reserved memory for training = 15.344 GB.
    Peak reserved memory % of max memory = 73.504 %.
    Peak reserved memory for training % of max memory = 63.933 %.
    

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

[NOTE] TinyLlama's internal maximum sequence length is 2048. We use RoPE Scaling to extend it to 4096 with Unsloth!

Downloads last month
16
GGUF
Model size
1.1B params
Architecture
llama

4-bit

Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for kirankunapuli/TinyLlama-1.1B-Hinglish-LORA-v1.0

Quantized
(73)
this model

Datasets used to train kirankunapuli/TinyLlama-1.1B-Hinglish-LORA-v1.0