YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
How to Get Started with the Model
To use this model, you can either interact with it programmatically using the Python code below or through a web-based interface provided by Gradio.
Using Python Code
from transformers import TFAutoModelForImageClassification, AutoTokenizer
import gradio as gr
# Laden Sie das Modell und den Tokenizer von Hugging Face herunter
model = TFAutoModelForImageClassification.from_pretrained("kiki7555/pokemon_classifier_tf")
tokenizer = AutoTokenizer.from_pretrained("kiki7555/pokemon_classifier_tf")
def predict_pokemon(image):
# Hier kannst du die Bildvorverarbeitung und -nachverarbeitung hinzufügen
# ...
# Vorhersage treffen
predictions = model.predict(image) # Hier musst du die genaue Vorverarbeitung für das Bild hinzufügen
predicted_class = predictions.argmax()
class_names = ['Charizard', 'Pikachu', 'Zapdos']
return class_names[predicted_class]
# Gradio UI erstellen
image_input = gr.inputs.Image(shape=(128, 128))
output_text = gr.outputs.Textbox()
gr.Interface(
fn=predict_pokemon,
inputs=image_input,
outputs=output_text,
title="Pokemon Classifier",
description="Classify images of Pokemon into three categories: Charizard, Pikachu, and Zapdos."
).launch()
- Downloads last month
- 3