khalidrajan's picture
End of training
11eacbd verified
metadata
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
  - generated_from_trainer
model-index:
  - name: distilbert-base-uncased_legal_ner_finetuned
    results: []

distilbert-base-uncased_legal_ner_finetuned

This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2765
  • Law Precision: 0.7983
  • Law Recall: 0.8716
  • Law F1: 0.8333
  • Law Number: 109
  • Violated by Precision: 0.7937
  • Violated by Recall: 0.7042
  • Violated by F1: 0.7463
  • Violated by Number: 71
  • Violated on Precision: 0.3934
  • Violated on Recall: 0.3429
  • Violated on F1: 0.3664
  • Violated on Number: 70
  • Violation Precision: 0.5657
  • Violation Recall: 0.6588
  • Violation F1: 0.6087
  • Violation Number: 425
  • Overall Precision: 0.6084
  • Overall Recall: 0.6652
  • Overall F1: 0.6355
  • Overall Accuracy: 0.9409

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Law Precision Law Recall Law F1 Law Number Violated by Precision Violated by Recall Violated by F1 Violated by Number Violated on Precision Violated on Recall Violated on F1 Violated on Number Violation Precision Violation Recall Violation F1 Violation Number Overall Precision Overall Recall Overall F1 Overall Accuracy
No log 1.0 85 1.1323 0.0 0.0 0.0 109 0.0 0.0 0.0 71 0.0 0.0 0.0 70 0.0 0.0 0.0 425 0.0 0.0 0.0 0.7656
No log 2.0 170 0.4593 0.0 0.0 0.0 109 0.0 0.0 0.0 71 0.0 0.0 0.0 70 0.1391 0.1741 0.1546 425 0.1391 0.1096 0.1226 0.8706
No log 3.0 255 0.3529 0.1923 0.0459 0.0741 109 0.0 0.0 0.0 71 0.0 0.0 0.0 70 0.2088 0.2 0.2043 425 0.2079 0.1333 0.1625 0.8943
No log 4.0 340 0.2708 0.1176 0.0734 0.0904 109 0.0 0.0 0.0 71 0.0 0.0 0.0 70 0.4321 0.4941 0.4610 425 0.3928 0.3230 0.3545 0.9134
No log 5.0 425 0.2579 0.8295 0.6697 0.7411 109 0.6667 0.3099 0.4231 71 0.3095 0.1857 0.2321 70 0.4197 0.4612 0.4395 425 0.4825 0.4504 0.4659 0.9153
0.5875 6.0 510 0.2516 0.8091 0.8165 0.8128 109 0.6 0.5070 0.5496 71 0.3542 0.2429 0.2881 70 0.5458 0.6588 0.5970 425 0.5773 0.6252 0.6003 0.9342
0.5875 7.0 595 0.2355 0.7946 0.8165 0.8054 109 0.7167 0.6056 0.6565 71 0.3438 0.3143 0.3284 70 0.5455 0.6353 0.5870 425 0.5800 0.6281 0.6031 0.9382
0.5875 8.0 680 0.2659 0.8246 0.8624 0.8430 109 0.7286 0.7183 0.7234 71 0.3243 0.3429 0.3333 70 0.5491 0.6706 0.6038 425 0.5843 0.6726 0.6253 0.9398
0.5875 9.0 765 0.2839 0.752 0.8624 0.8034 109 0.7391 0.7183 0.7286 71 0.3421 0.3714 0.3562 70 0.5524 0.6824 0.6105 425 0.5799 0.6830 0.6272 0.9394
0.5875 10.0 850 0.2765 0.7983 0.8716 0.8333 109 0.7937 0.7042 0.7463 71 0.3934 0.3429 0.3664 70 0.5657 0.6588 0.6087 425 0.6084 0.6652 0.6355 0.9409

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1