mixedbread-ai/deepset-mxbai-embed-de-large-v1

This is a sentence-transformers model finetuned from mixedbread-ai/deepset-mxbai-embed-de-large-v1 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: mixedbread-ai/deepset-mxbai-embed-de-large-v1
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("kenoc/mxbai-de-abat-matryoshka")
# Run inference
sentences = [
    "Kurs Netzwerktechnik gefunden'. 61 WHEN 4. 62 * Fehlerfall 63 WRITE: / 'keine Teilnehmer für den Kurs Netzwerktechnik gefunden'. 64 WHEN OTHERS. 65 * Kann nicht sein, anderer sy-subrc von der Anweisung nicht geliefert 66 ENDCASE. Listing 10.2 Report Z_TEILNEHMERLISTE10_case Anmerkungen zum Quellcode Zeile 32 bis 41 Alle Sätze der Teilnehmertabelle werden gelesen. Je nach Feldinhalt des Kurstitels werden die Zähler für die verschiedenen Kurse »Netz- werktechnik«, »PC-Grundlagen« und für sonstige Kurse hochgezählt. Zeile 43 bis 46 Nach der SELECT-Schleife werden die Gruppensummen ausgegeben. Dabei gilt wieder das Prinzip, in der Schleife die Summen hochzuzäh- len und nach der Schleife",
    'Wie werden die Teilnehmer für einen bestimmten Kurs gezählt und was wird ausgegeben, nachdem alle Sätze der Teilnehmertabelle gelesen wurden?',
    'Wie können Sie in SAP S/4HANA geeignete Anwendungsrollen identifizieren, die für spezifische Geschäftsprozesse wie den Verkauf von Kartenkontingenten oder die Lieferung von Produkten mit einer bestimmten Priorität erforderlich sind?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric dim_768 dim_512 dim_256 dim_128 dim_64
cosine_accuracy@1 0.1944 0.1757 0.1711 0.1384 0.1198
cosine_accuracy@3 0.5117 0.4992 0.4868 0.4635 0.3764
cosine_accuracy@5 0.5956 0.5785 0.5739 0.5397 0.4541
cosine_accuracy@10 0.6579 0.647 0.6345 0.6065 0.5365
cosine_precision@1 0.1944 0.1757 0.1711 0.1384 0.1198
cosine_precision@3 0.1706 0.1664 0.1623 0.1545 0.1255
cosine_precision@5 0.1191 0.1157 0.1148 0.1079 0.0908
cosine_precision@10 0.0658 0.0647 0.0635 0.0607 0.0537
cosine_recall@1 0.1944 0.1757 0.1711 0.1384 0.1198
cosine_recall@3 0.5117 0.4992 0.4868 0.4635 0.3764
cosine_recall@5 0.5956 0.5785 0.5739 0.5397 0.4541
cosine_recall@10 0.6579 0.647 0.6345 0.6065 0.5365
cosine_ndcg@10 0.4355 0.4215 0.4133 0.3835 0.3302
cosine_mrr@10 0.363 0.3479 0.341 0.3106 0.2638
cosine_map@100 0.3667 0.3521 0.3453 0.3157 0.2699

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 5,779 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 17 tokens
    • mean: 181.9 tokens
    • max: 460 tokens
    • min: 6 tokens
    • mean: 33.97 tokens
    • max: 112 tokens
  • Samples:
    positive anchor
    weiter aufgefächert und dienen zur Abbildung komplexerer Prozesse. Informationen zum Kunden, die sonst nur Vertriebsmitarbeitern mit direk­ ten Kundenkontakten zur Verfügung stehen, werden im System gespeichert. Diese Daten sind auch für Mitarbeiter aus den Bereichen Marketing oder Pro­ duktentwicklung relevant. So kann auf der Basis dieser Daten eine Marke­ tingaktion durchgeführt werden, oder die Produktentwicklung kann gezielt auf Kundenwünsche eingehen. Ohne ein IT-System gehen für das Unterneh­ In den letzten Jahren ist zu beobachten, dass CRM Anwendungen ver mehrt auf mobilen Endgeräten wie Tablet-Computern oder Smart­ phones (Blackberry, iPhone etc.) eingesetzt werden. Dieser Trend beschränkt sich natürlich nicht auf das Was wird im System gespeichert und warum werden CRM-Anwendungen auf mobilen Endgeräten eingesetzt?
    16 17 18 19 In der Personalzeitwirtschaft, kurz Zeitwirtschaft, werden zum einen die Anwesenheitszeiten erfasst; dazu gehören die Dauer und Lage der Anwesen­ heits- und Pausenzeiten, Informationen zu Arbeitszeiten, die nicht am übli­ chen Arbeitsplatz stattfinden (wie Dienstreisen) sowie die Tätigkeit während der erfassten Zeit. Zum anderen werden aber auch Abweichungen zum ursprünglichen Arbeitsplan gepflegt, wie zum Beispiel Überstunden, Kurzar­ beit oder Wiedereingliederung. Des Weiteren werden Fehlzeiten wie Krank­ heitstage und Urlaubstage im System dokumentiert. Diese Informationen können nur dann ausgewertet werden, wenn die vorge­ sehenen Arbeitszeiten eines Mitarbeiters im sogenannten Arbeitszeitplan festgehalten werden. Hierbei wird zum einen die Anzahl Welche Arten von Abweichungen vom ursprünglichen Arbeitsplan, wie Überstunden, Kurzarbeit oder Wiedereingliederung, werden in der Personalzeitwirtschaft genau dokumentiert?
    einer String-Operation beseitigt werden. Zeichenketten verschieben Eine Möglichkeit wäre, die Zeichenkette nach links zu verschieben, bis die führenden Nullen verschwunden sind. Dies erreichen Sie mit fol- gender Anweisung: SHIFT SHIFT telefon LEFT DELETING LEADING '0'. Durch die SHIFT-Anweisung wird der Feldinhalt, das heißt die Zei- chenkette 00887766, so lange nach links verschoben, bis alle führen- den Nullen gelöscht sind. Der Feldinhalt lautet nach der Operation 887766; das Feld wird demnach rechts mit zwei Leerzeichen aufge- füllt. Natürlich können Sie eine Zeichenkette in einem Feld auch in eine bestimmte Richtung um eine bestimmte Anzahl Positionen verschie- ben. Möchten Sie die Telefonnummer Hey, ich habe eine Telefonnummer in einem String und führende Nullen, die ich entfernen muss. Kannst du mir bitte genau sagen, wie ich das machen kann? Die IT-Untstützung hat mich nur mit 'SHIFT LEFT DELETING LEADING' belädtet, aber ich verstehe nicht, was das bedeutet.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 8
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • gradient_checkpointing: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 8
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: True
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_768_cosine_ndcg@10 dim_512_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
1.0 46 - 0.4144 0.4153 0.3957 0.3746 0.3258
1.0884 50 4.709 - - - - -
2.0 92 - 0.4353 0.4223 0.4205 0.3787 0.3343
2.1768 100 2.4455 - - - - -
3.0 138 - 0.4278 0.419 0.4156 0.3866 0.3398
3.2652 150 1.5083 - - - - -
3.9282 180 - 0.4355 0.4215 0.4133 0.3835 0.3302
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.12.8
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.1
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.2.1
  • Datasets: 2.19.2
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
2
Safetensors
Model size
487M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for kenoc/mxbai-de-abat-matryoshka

Finetuned
(4)
this model

Evaluation results