metadata
base_model:
- openai-community/gpt2
language:
- en
- ta
license: mit
tags:
- gpt2
- text-generation
- QnQ
datasets:
- varshil27/1mg-train-data-LLama2-formatted
- karthikqnq/1mgdataset
- anjandash/java-8m-methods-v2
metrics:
- accuracy
QnQGPT Model
This is a custom GPT model based on GPT-2 architecture.
Model Details
- Model Type: GPT-2
- Base Model: gpt2
- Training Data: [Describe your training data]
- Use Cases: [Describe intended use cases]
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("karthikqnq/qnqgpt")
tokenizer = AutoTokenizer.from_pretrained("karthikqnq/qnqgpt")
# Generate text
text = "Hello, how are"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_length=50)
result = tokenizer.decode(outputs[0])
print(result)
Training Details
[Add your training details here]
Limitations
[Add model limitations here]
License
This model is released under the MIT License.