karoldobiczek's picture
End of training
b50fd5d verified
metadata
license: mit
base_model: roberta-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: roberta-large-fomc_long
    results: []

roberta-large-fomc_long

This model is a fine-tuned version of roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8275
  • Accuracy: 0.6822

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.0083 1 1.1053 0.2733
1.0762 0.2149 26 1.0661 0.4636
1.0904 0.4215 51 1.0652 0.4636
1.0903 0.6281 76 1.0493 0.4656
1.0416 0.8347 101 1.0238 0.4980
0.9313 1.0 121 0.8957 0.5668
0.9313 1.0413 126 0.9420 0.5567
0.9943 1.2479 151 0.8193 0.6316
0.8029 1.4545 176 0.7896 0.6518
0.7335 1.6612 201 0.8053 0.6660
0.763 1.8678 226 0.7800 0.6640
0.7384 2.0 242 0.8398 0.6377
0.7316 2.0744 251 0.8587 0.6741
0.5971 2.2810 276 0.8520 0.6619
0.7952 2.4876 301 0.7661 0.6862
0.632 2.6942 326 0.7477 0.6640
0.5979 2.9008 351 0.9390 0.6215
0.5995 3.0 363 0.8275 0.6822
0.7325 3.1074 376 0.7512 0.6741
0.5238 3.3140 401 0.8282 0.6923
0.5401 3.5207 426 0.8515 0.6802
0.5937 3.7273 451 0.8372 0.6802
0.521 3.9339 476 1.0131 0.6518
0.6484 4.0 484 0.8845 0.6235
0.4641 4.1405 501 1.1492 0.6700
0.4919 4.3471 526 0.7645 0.7045
0.47 4.5537 551 0.9051 0.6842
0.4698 4.7603 576 0.8752 0.6964
0.6327 4.9669 601 0.8473 0.6721
0.6327 5.0 605 1.1093 0.6680
0.37 5.1736 626 1.0581 0.6903
0.3295 5.3802 651 0.9647 0.6842
0.4251 5.5868 676 0.9839 0.7004
0.4478 5.7934 701 0.9300 0.6964
0.4365 6.0 726 1.0642 0.7206
0.4365 6.0 726 1.0642 0.7206
0.239 6.2066 751 1.3570 0.6680
0.3339 6.4132 776 1.0710 0.6923
0.2864 6.6198 801 1.0177 0.6741
0.5973 6.8264 826 1.3977 0.6741
0.2812 7.0 847 1.0341 0.6964
0.325 7.0331 851 1.1641 0.6741
0.2835 7.2397 876 1.2173 0.6923
0.2406 7.4463 901 1.4326 0.6943
0.1369 7.6529 926 1.6347 0.6802
0.2019 7.8595 951 1.2877 0.6862
0.277 8.0 968 1.3664 0.6964
0.2004 8.0661 976 1.4982 0.7105
0.168 8.2727 1001 1.7011 0.7004
0.133 8.4793 1026 1.8177 0.7045
0.2772 8.6860 1051 1.4516 0.7045
0.0536 8.8926 1076 1.6896 0.7146
0.2335 9.0 1089 1.6829 0.7045
0.0846 9.0992 1101 1.9997 0.7085
0.0468 9.3058 1126 2.2480 0.6842
0.1376 9.5124 1151 1.9996 0.6964
0.1422 9.7190 1176 1.5541 0.7045
0.0717 9.9256 1201 1.8728 0.6822
0.125 10.0 1210 1.8979 0.7045
0.0339 10.1322 1226 1.9404 0.7146
0.0581 10.3388 1251 2.0144 0.6903
0.0804 10.5455 1276 2.1959 0.7004
0.1289 10.7521 1301 2.1261 0.6984
0.1011 10.9587 1326 2.1063 0.7024
0.0841 11.0 1331 2.1062 0.7045
0.0579 11.1653 1351 2.1912 0.7146
0.0383 11.3719 1376 2.3198 0.7004
0.0322 11.5785 1401 2.3495 0.6984
0.0579 11.7851 1426 2.2680 0.7004
0.0575 11.9917 1451 2.3905 0.6842
0.0575 12.0 1452 2.3978 0.6822
0.0003 12.1983 1476 2.4618 0.6903
0.0029 12.4050 1501 2.4325 0.6923
0.0638 12.6116 1526 2.4757 0.6862
0.0196 12.8182 1551 2.5483 0.6802
0.0731 13.0 1573 2.4884 0.6822
0.0731 13.0248 1576 2.4746 0.6862
0.0002 13.2314 1601 2.4790 0.6923
0.0002 13.4380 1626 2.5076 0.6822
0.0677 13.6446 1651 2.4820 0.6862
0.0002 13.8512 1676 2.4739 0.6903
0.0172 14.0 1694 2.4303 0.6923
0.0002 14.0579 1701 2.4298 0.6923
0.0002 14.2645 1726 2.4557 0.7004
0.0002 14.4711 1751 2.4311 0.7004
0.0504 14.6777 1776 2.4225 0.7024
0.0003 14.8843 1801 2.4239 0.7024
0.0342 15.0 1815 2.4238 0.7024

Framework versions

  • Transformers 4.40.2
  • Pytorch 1.12.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1