finbert-fomc

This model is a fine-tuned version of prosusai/finbert on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8286
  • Accuracy: 0.6154

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.0083 1 1.7351 0.4049
1.7127 0.2149 26 1.4334 0.4777
1.3539 0.4215 51 1.0763 0.5547
1.0501 0.6281 76 0.9471 0.5547
0.9614 0.8347 101 0.9471 0.5628
0.988 1.0 121 0.9030 0.5709
0.988 1.0413 126 0.8999 0.5547
0.8862 1.2479 151 0.9215 0.5628
0.8506 1.4545 176 0.8740 0.5506
0.8825 1.6612 201 0.8604 0.6235
0.8366 1.8678 226 0.8063 0.6194
0.7666 2.0 242 0.8286 0.6154
0.7039 2.0744 251 0.8652 0.6073
0.5698 2.2810 276 1.0371 0.5911
0.7683 2.4876 301 0.9662 0.5951
0.528 2.6942 326 0.8984 0.6275
0.6282 2.9008 351 0.9095 0.6154
0.5638 3.0 363 0.8730 0.6761
0.5208 3.1074 376 0.9042 0.6599
0.4426 3.3140 401 1.0531 0.6235
0.5795 3.5207 426 1.0305 0.6559
0.363 3.7273 451 0.9831 0.6559
0.4584 3.9339 476 0.9950 0.6437
0.3794 4.0 484 1.0740 0.6154
0.2579 4.1405 501 1.1667 0.6356
0.1803 4.3471 526 1.0366 0.6883
0.1824 4.5537 551 1.2625 0.6599
0.2647 4.7603 576 1.2183 0.6761
0.205 4.9669 601 1.1944 0.6721
0.205 5.0 605 1.1959 0.6721

Framework versions

  • Transformers 4.40.2
  • Pytorch 1.12.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
19
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.