classifier_adapter

This model is a fine-tuned version of bert-base-chinese on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0386
  • Accuracy: 0.9875
  • Precision: 0.8841
  • Recall: 0.7947
  • F1: 0.8283
  • Ap: 0.8850

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 0
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Ap
No log 0.38 100 0.1590 0.9571 0.0 0.0 0.0 0.1046
No log 0.75 200 0.1578 0.9571 0.0 0.0 0.0 0.1808
No log 1.13 300 0.1185 0.9653 0.0899 0.0599 0.0680 0.4391
No log 1.51 400 0.0898 0.9724 0.2199 0.1409 0.1617 0.6479
0.1405 1.89 500 0.0774 0.9750 0.3319 0.2273 0.2575 0.7417
0.1405 2.26 600 0.0683 0.9771 0.4118 0.3002 0.3294 0.7791
0.1405 2.64 700 0.0616 0.9804 0.6207 0.4336 0.4810 0.8187
0.1405 3.02 800 0.0556 0.9821 0.7210 0.4875 0.5435 0.8380
0.1405 3.4 900 0.0519 0.9830 0.7329 0.5224 0.5839 0.8566
0.0598 3.77 1000 0.0486 0.9846 0.7818 0.6063 0.6615 0.8629
0.0598 4.15 1100 0.0469 0.9853 0.8223 0.6807 0.7248 0.8633
0.0598 4.53 1200 0.0457 0.9856 0.8521 0.7235 0.7663 0.8666
0.0598 4.91 1300 0.0439 0.9859 0.8436 0.6955 0.7435 0.8753
0.0598 5.28 1400 0.0424 0.9862 0.8715 0.6964 0.7496 0.8739
0.0399 5.66 1500 0.0415 0.9869 0.8695 0.7621 0.7994 0.8772
0.0399 6.04 1600 0.0416 0.9865 0.8700 0.7670 0.8039 0.8853
0.0399 6.42 1700 0.0401 0.9871 0.8687 0.7686 0.8047 0.8846
0.0399 6.79 1800 0.0405 0.9867 0.8734 0.7851 0.8167 0.8848
0.0399 7.17 1900 0.0410 0.9865 0.8600 0.7708 0.8057 0.8770
0.0315 7.55 2000 0.0393 0.9873 0.8869 0.7718 0.8158 0.8819
0.0315 7.92 2100 0.0385 0.9871 0.8747 0.7861 0.8196 0.8856
0.0315 8.3 2200 0.0386 0.9877 0.8863 0.7856 0.8227 0.8857
0.0315 8.68 2300 0.0390 0.9869 0.8695 0.7949 0.8221 0.8830
0.0315 9.06 2400 0.0391 0.9872 0.8685 0.8081 0.8311 0.8830
0.026 9.43 2500 0.0386 0.9875 0.8841 0.7947 0.8283 0.8850
0.026 9.81 2600 0.0390 0.9871 0.8615 0.8064 0.8264 0.8840
0.026 10.19 2700 0.0386 0.9873 0.8689 0.8023 0.8264 0.8859
0.026 10.57 2800 0.0386 0.9873 0.8737 0.7986 0.8265 0.8860

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.2.1+cu121
  • Tokenizers 0.15.2
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for karinegabsschon/classifier_adapter

Finetuned
(155)
this model