KARAKURI LM 8x7B Chat v0.1

KARAKURI LM

Model Details

Model Description

Usage

Warning

The prompt format has been changed from KARAKURI LM 70B Chat v0.1. Please make sure to follow the correct format. Otherwise, the model will generate sub-optimal outputs.

Prompt Format

We use the following prompt template of multi-turn conversation in the Mistral format, which includes an encoded string of multiple attribute values.

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("karakuri-ai/karakuri-lm-8x7b-chat-v0.1")

messages = [
    {"role": "system", "content": "System prompt"},
    {"role": "user", "content": "User prompt"},
    {"role": "assistant", "content": "Model response"},
    {"role": "user", "content": "User prompt"},
]
tokenizer.apply_chat_template(messages, tokenize=False)
# <s>[INST] <<SYS>>
# System prompt
# <</SYS>>
#
# User prompt [ATTR] helpfulness: 4 correctness: 4 coherence: 4 complexity: 4 verbosity: 4 quality: 4 toxicity: 0 humor: 0 creativity: 0 [/ATTR] [/INST]Model response</s>[INST] User prompt [ATTR] helpfulness: 4 correctness: 4 coherence: 4 complexity: 4 verbosity: 4 quality: 4 toxicity: 0 humor: 0 creativity: 0 [/ATTR] [/INST]

The prompt template contains nine attributes. The first five are derived from HelpSteer, while the remaining four are derived from OASST2. The values are represented by integers ranging from 0 to 4, with 0 being the lowest and 4 being the highest.

  • helpfulness (default: 4): Overall helpfulness of the response to the prompt.
  • correctness (default: 4): Inclusion of all pertinent facts without errors.
  • coherence (default: 4): Consistency and clarity of expression.
  • complexity (default: 4): Intellectual depth required to write response (i.e. whether the response can be written by anyone with basic language competency or requires deep domain expertise).
  • verbosity (default: 4): Amount of detail included in the response, relative to what is asked for in the prompt.
  • quality (default: 4): Perceived goodness of response.
  • toxicity (default: 0): Undesirable elements such as vulgar, harmful or potentially biased response.
  • humor (default: 0): Sense of humor within response.
  • creativity (default: 0): Willingness to generate non-conventional response.

If you want to change attribute values from the default values specified in the template, you can modify them to any values by adding the attribute values to the user messages:

messages = [
    {"role": "user", "content": "User prompt", "helpfulness": 0, "complexity": 0},
]
tokenizer.apply_chat_template(messages, tokenize=False)
# <s>[INST] User prompt [ATTR] helpfulness: 0 correctness: 4 coherence: 4 complexity: 0 verbosity: 4 quality: 4 toxicity: 0 humor: 0 creativity: 0 [/ATTR] [/INST]

Run the model

from transformers import AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained(
    "karakuri-ai/karakuri-lm-8x7b-chat-v0.1",
    torch_dtype="auto",
    device_map="auto",
)

messages = [
    {
        "role": "user",
        "content": "週末に日帰りで東京に遊びに行こうと思っています。日帰りなので、短時間で回れるおすすめの観光プランを教えてください。",
    },
]

input_ids = tokenizer.apply_chat_template(
    messages,
    return_tensors="pt",
).to(model.device)
outputs = model.generate(input_ids, max_new_tokens=512)
tokenizer.decode(outputs[0][input_ids.shape[-1]:])

Performance

Model # Active Params Alignment MT-Bench-jp
Qwen1.5 72B Chat 72B DPO 8.19
KARAKURI LM 8x7B Chat v0.1 13B SteerLM 7.54
Command R+ 104B - 7.31
Mixtral 8x7B Instruct v0.1 13B DPO 7.24
Llama 3 70B Instruct 70B RLHF 7.13
KARAKURI LM 70B Chat v0.1 70B SteerLM 6.43
Llama 2 70B Chat 70B RLHF 5.23

Training Details

Training Data

Training Infrastructure

  • Hardware: The model was trained on 8 nodes of an Amazon EC2 trn1.32xlarge instance.
  • Software: We use code based on neuronx-nemo-megatron.

Citation

@misc{karakuri_lm_8x7b_chat_v01,
    author       = { {KARAKURI} {I}nc. },
    title        = { {KARAKURI} {LM} 8x7{B} {C}hat v0.1 },
    year         = { 2024 },
    url          = { https://huggingface.co/karakuri-ai/karakuri-lm-8x7b-chat-v0.1 },
    publisher    = { Hugging Face },
    journal      = { Hugging Face repository }
}
Downloads last month
114
Safetensors
Model size
46.7B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for karakuri-ai/karakuri-lm-8x7b-chat-v0.1

Finetuned
(5)
this model
Finetunes
1 model
Quantizations
4 models

Datasets used to train karakuri-ai/karakuri-lm-8x7b-chat-v0.1

Collection including karakuri-ai/karakuri-lm-8x7b-chat-v0.1

Evaluation results