opt-babylm2-subset-default-20-epochs-3e-4

This model was trained from scratch on the kanishka/babylm2-subset dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4374
  • Accuracy: 0.5310

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 32000
  • num_epochs: 20.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.6575 1.0 14169 2.8571 0.4750
2.4179 2.0 28338 2.6258 0.4990
2.2903 3.0 42507 2.5130 0.5119
2.2222 4.0 56676 2.4525 0.5194
2.1477 5.0 70845 2.4207 0.5237
2.0967 6.0 85014 2.3990 0.5266
2.0608 7.0 99183 2.3885 0.5284
2.0231 8.0 113352 2.3815 0.5296
1.9966 9.0 127521 2.3803 0.5304
1.974 10.0 141690 2.3802 0.5311
1.9469 11.0 155859 2.3798 0.5315
1.9241 12.0 170028 2.3857 0.5318
1.8975 13.0 184197 2.3908 0.5319
1.8763 14.0 198366 2.3943 0.5320
1.8519 15.0 212535 2.4029 0.5317
1.8306 16.0 226704 2.4098 0.5317
1.8045 17.0 240873 2.4174 0.5315
1.7801 18.0 255042 2.4237 0.5314
1.7649 19.0 269211 2.4308 0.5311
1.7481 20.0 283380 2.4374 0.5310

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.2.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.19.1
Downloads last month
5
Safetensors
Model size
97.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train kanishka/opt-babylm2-subset-default-20-epochs-3e-4

Evaluation results