kanishka's picture
End of training
34e82f8 verified
---
library_name: transformers
tags:
- generated_from_trainer
datasets:
- kanishka/babylm2-rewritten-clean-spacy
metrics:
- accuracy
model-index:
- name: opt-babylm2-rewritten-clean-spacy-earlystop-bpe_seed-42_1e-3
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: kanishka/babylm2-rewritten-clean-spacy
type: kanishka/babylm2-rewritten-clean-spacy
metrics:
- name: Accuracy
type: accuracy
value: 0.47868057440510814
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opt-babylm2-rewritten-clean-spacy-earlystop-bpe_seed-42_1e-3
This model was trained from scratch on the kanishka/babylm2-rewritten-clean-spacy dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6840
- Accuracy: 0.4787
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 32000
- num_epochs: 20.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:--------:|
| 4.1044 | 1.0 | 2256 | 3.8204 | 0.3604 |
| 3.4457 | 2.0 | 4512 | 3.3046 | 0.4093 |
| 3.13 | 3.0 | 6768 | 3.0945 | 0.4299 |
| 2.9219 | 4.0 | 9024 | 2.9890 | 0.4404 |
| 2.8444 | 5.0 | 11280 | 2.9282 | 0.4466 |
| 2.7883 | 6.0 | 13536 | 2.8910 | 0.4508 |
| 2.7434 | 7.0 | 15792 | 2.8579 | 0.4545 |
| 2.7158 | 8.0 | 18048 | 2.8428 | 0.4560 |
| 2.6905 | 9.0 | 20304 | 2.8298 | 0.4573 |
| 2.6697 | 10.0 | 22560 | 2.8169 | 0.4592 |
| 2.6509 | 11.0 | 24816 | 2.8080 | 0.4601 |
| 2.6494 | 12.0 | 27072 | 2.8020 | 0.4607 |
| 2.6384 | 13.0 | 29328 | 2.7958 | 0.4616 |
| 2.6297 | 14.0 | 31584 | 2.7939 | 0.4620 |
| 2.612 | 15.0 | 33840 | 2.7649 | 0.4653 |
| 2.5667 | 16.0 | 36096 | 2.7425 | 0.4686 |
| 2.5177 | 17.0 | 38352 | 2.7206 | 0.4714 |
| 2.4607 | 18.0 | 40608 | 2.6999 | 0.4746 |
| 2.397 | 19.0 | 42864 | 2.6865 | 0.4773 |
| 2.3241 | 19.9915 | 45100 | 2.6840 | 0.4787 |
### Framework versions
- Transformers 4.48.0
- Pytorch 2.5.1
- Datasets 3.2.0
- Tokenizers 0.21.0