kaixkhazaki's picture
Update README.md
51ee0bb verified
metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
  - modernbert
  - zeroshot
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: modernbert-zeroshot-xnli-eng-0.1
    results: []
datasets:
  - facebook/xnli
language:
  - en
pipeline_tag: zero-shot-classification

modernbert-zeroshot-xnli-eng-0.1

This model is a fine-tuned version of answerdotai/ModernBERT-base on 10% of the english subset of facebook/xnli dataset. It achieves the following results on the evaluation set:

  • Test Loss: 0.3539
  • F1: 0.8596

Model description

answerdotai/ModernBERT-base

Intended uses & limitations

Training and evaluation data

10% of the english subset of facebook/xnli dataset.

Training procedure

trained on a single gpu for apx. 20 mins.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.0801 0.1629 200 0.8987 0.5868 0.5820 0.6637 0.5868
0.6737 0.3257 400 0.4906 0.8184 0.8181 0.8340 0.8184
0.5361 0.4886 600 0.3931 0.8723 0.8724 0.8759 0.8723
0.4933 0.6515 800 0.3664 0.8782 0.8786 0.8853 0.8782
0.4728 0.8143 1000 0.4300 0.8303 0.8306 0.8604 0.8303
0.4434 0.9772 1200 0.3210 0.8922 0.8923 0.8925 0.8922
0.2859 1.1401 1400 0.3657 0.8483 0.8502 0.8651 0.8483
0.2768 1.3029 1600 0.4162 0.8403 0.8397 0.8520 0.8403
0.258 1.4658 1800 0.4072 0.8543 0.8543 0.8634 0.8543
0.2657 1.6287 2000 0.3763 0.8463 0.8460 0.8537 0.8463
0.2721 1.7915 2200 0.3940 0.8463 0.8464 0.8595 0.8463
0.2878 1.9544 2400 0.3539 0.8603 0.8596 0.8641 0.8603
0.1366 2.1173 2600 0.7444 0.8343 0.8371 0.8738 0.8343

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.21.0