mistral-orpo-beta / README.md
JW17's picture
Add official results for AlpacaEval
1050739 verified
---
language:
- en
license: mit
base_model:
- mistralai/Mistral-7B-v0.1
datasets:
- argilla/ultrafeedback-binarized-preferences-cleaned
pipeline_tag: text-generation
model-index:
- name: Mistral-ORPO-β
results:
# AI2 Reasoning Challenge (25-Shot)
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
name: normalized accuracy
value: 61.18
source:
name: Open LLM Leaderboard
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaist-ai%2Fmistral-orpo-beta
# HellaSwag (10-shot)
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
name: normalized accuracy
value: 84.03
source:
name: Open LLM Leaderboard
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaist-ai%2Fmistral-orpo-beta
# TruthfulQA (0-shot)
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 47.69
source:
name: Open LLM Leaderboard
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaist-ai%2Fmistral-orpo-beta
# GSM8k (5-shot)
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
name: accuracy
value: 39.8
source:
name: Open LLM Leaderboard
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaist-ai%2Fmistral-orpo-beta
# MMLU (5-Shot)
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
name: accuracy
value: 63.26
source:
name: Open LLM Leaderboard
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaist-ai%2Fmistral-orpo-beta
# Winogrande (5-shot)
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
name: accuracy
value: 79.24
source:
name: Open LLM Leaderboard
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaist-ai%2Fmistral-orpo-beta
- task:
type: text-generation
dataset:
name: AlpacaEval 1
type: AlpacaEval
metrics:
- type: AlpacaEval 1.0
value: 91.16%
name: Win Rate
source:
url: https://tatsu-lab.github.io/alpaca_eval/
name: Leaderboard
- task:
type: text-generation
dataset:
name: AlpacaEval 2
type: AlpacaEval
metrics:
- type: AlpacaEval 2.0
value: 12.57%
name: Win Rate
source:
url: https://tatsu-lab.github.io/alpaca_eval/
name: Leaderboard
- task:
type: text-generation
dataset:
name: MT-Bench
type: MT-Bench
metrics:
- type: MT-Bench
value: 7.322
name: Score
source:
url: https://github.com/lm-sys/FastChat/blob/main/fastchat/llm_judge/
name: self-reported
---
# **Mistral-ORPO-β (7B)**
**Mistral-ORPO** is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) using the *[odds ratio preference optimization (ORPO)](https://arxiv.org/abs/2403.07691)*. With ORPO, the model directly learns the preference without the supervised fine-tuning warmup phase. **Mistral-ORPO-β** is fine-tuned exclusively on the 61k instances of the cleaned version of UltraFeedback, [argilla/ultrafeedback-binarized-preferences-cleaned](https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned), by [Argilla](https://huggingface.co/argilla).
- **Github Repository**: https://github.com/xfactlab/orpo
## 👍 **Model Performance**
### 1) AlpacaEval & MT-Bench
|Model Name|Size|Align|MT-Bench|AlpacaEval 1.0|AlpacaEval 2.0|
|:--------|:--------------:|:--------------:|:-------------------:|:------------:|:------------:|
|**Mistral-<tt>ORPO</tt>-⍺**|7B|<tt>ORPO</tt>|7.23|87.92|11.33|
|**Mistral-<tt>ORPO</tt>-β**|7B|<tt>ORPO</tt>|7.32|91.41|12.20|
|Zephyr β |7B|DPO|7.34|90.60|10.99|
|TULU-2-DPO |13B|DPO|7.00|89.5|10.12|
|Llama-2-Chat |7B|RLHF|6.27|71.37|4.96|
|Llama-2-Chat |13B|RLHF|6.65|81.09|7.70|
### 2) IFEval
| **Model Type** | **Prompt-Strict** | **Prompt-Loose** | **Inst-Strict** | **Inst-Loose** |
|--------------------|:-----------------:|:----------------:|:---------------:|:--------------:|
| **Mistral-ORPO-⍺** | 0.5009 | 0.5083 | 0.5995 | 0.6163 |
| **Mistral-ORPO-β** | 0.5287 | 0.5564 | 0.6355 | 0.6619 |
## 🗺️ **MT-Bench by Category**
![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F6415c043486c7c9a5d151583%2F1Ifpt0ljCfJPEoZAqlqqy.png%3C%2Fspan%3E)%3C!-- HTML_TAG_END -->
## 🖥️ **Inference**
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("kaist-ai/mistral-orpo-beta")
tokenizer = AutoTokenizer.from_pretrained("kaist-ai/mistral-orpo-beta")
# Apply chat template
query = [{'role': 'user', 'content': 'Hi! How are you doing?'}]
prompt = tokenizer.apply_chat_template(query, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(prompt, return_tensors='pt')
# Generation with specific configurations
output = model.generate(
**inputs,
max_new_tokens=128,
do_sample=True,
temperature=0.7
)
response = tokenizer.batch_decode(output)
#<|user|>
#Hi! How are you doing?</s>
#<|assistant|>
#I'm doing well, thank you! How are you?</s>
```
## 📎 **Citation**
```
@misc{hong2024orpo,
title={ORPO: Monolithic Preference Optimization without Reference Model},
author={Jiwoo Hong and Noah Lee and James Thorne},
year={2024},
eprint={2403.07691},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```