wikisum

This model is a fine-tuned version of t5-small on an wikisum dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2922
  • Rouge1: 0.1811
  • Rouge2: 0.0673
  • Rougel: 0.147
  • Rougelsum: 0.147
  • Gen Len: 19.0

Model description

t5-small model fine-tuned on wikisum dataset.

Intended uses & limitations

Intended use: sumamrization of informatic articles. Limitations : may generate misleading information.

Training and evaluation data

check out wikisum dataset

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.5807 0.2236 500 2.3647 0.1813 0.0635 0.1452 0.1453 19.0
2.5059 0.4472 1000 2.3190 0.1823 0.0663 0.1473 0.1473 19.0
2.4945 0.6708 1500 2.3003 0.1808 0.0666 0.1468 0.1467 19.0
2.4963 0.8945 2000 2.2922 0.1811 0.0673 0.147 0.147 19.0

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
21
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jwhong2006/wikisum

Base model

google-t5/t5-small
Finetuned
(1632)
this model

Dataset used to train jwhong2006/wikisum