jvanhoof's picture
Update README.md
e973ce1 verified
metadata
language:
  - en
  - multilingual
  - es
  - pt
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:13930944
  - loss:MSELoss
base_model: sentence-transformers/paraphrase-MiniLM-L6-v2
widget:
  - source_sentence: >-
      Custer recommends that Congress find a way to end the treaties with the
      Lakota as soon as possible.
    sentences:
      - >-
        Custer recomienda al Congreso encontrar un modo de terminar los tratados
        con los lakota lo antes posible.
      - Pero estos poros de aquí son especiales.
      - Esta es la intersección más directa, obvia, de las dos cosas.
  - source_sentence: And the USFDA has a jurisdictional problem.
    sentences:
      - E a FDA dos Estados Unidos tem um problema de jurisdição.
      - >-
        Eu estimei que, atualmente no mundo, gastamos cerca de 106 vidas em
        média ensinando as pessoas a calcular manualmente.
      - Posso comprar aquele produto sem comprometer minha ética?
  - source_sentence: >-
      In Sri Lanka, a decades-long civil war between the Tamil minority and the
      Sinhala majority led to a bloody climax in 2009, after perhaps as many as
      100,000 people had been killed since 1983.
    sentences:
      - >-
        Portanto, temos de investir no desenvolvimento de líderes, líderes que
        tenham as habilidades, visão e determinação para fazer a paz.
      - >-
        No Sri Lanka, uma guerra civil de décadas entre a minoria tâmil e a
        maioria cingalesa levou a um clímax sangrento em 2009, após cerca de 100
        mil pessoas serem assassinadas desde 1983.
      - >-
        Nos anos 90, houve uma série de escândalos relativos à produção de bens
        de marca nos EUA -- trabalho infantil, trabalho forçado, graves abusos
        de saúde e segurança --
  - source_sentence: >-
      The provisions in the agreement may be complex, but so is the underlying
      conflict.
    sentences:
      - >-
        As saladas que você vê no McDonald's vêm desse trabalho -- eles terão
        uma salada asiática. Na Pepsi, dois terços do crescimento de rendimento
        vieram de seus alimentos saudáveis.
      - >-
        Não apenas esta, mas conectados com as idéias que estão aqui, para
        fazê-las mais coerentes.
      - >-
        O disposto no acordo pode ser complexo, mas assim é o conflito
        subjacente.
  - source_sentence: We now call this place home.
    sentences:
      - >-
        e outros não contêm. Neste desenho, a célula branca azulada, no canto
        superior esquerdo não reage à luz porque não possui o poro ativado por
        luz.
      - Moramos ali. Agora é aqui a nossa casa.
      - É mais fácil do que se possa imaginar.
datasets:
  - sentence-transformers/parallel-sentences-talks
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - negative_mse
  - src2trg_accuracy
  - trg2src_accuracy
  - mean_accuracy
  - pearson_cosine
  - spearman_cosine
model-index:
  - name: SentenceTransformer based on sentence-transformers/paraphrase-MiniLM-L6-v2
    results:
      - task:
          type: knowledge-distillation
          name: Knowledge Distillation
        dataset:
          name: en pt br
          type: en-pt-br
        metrics:
          - type: negative_mse
            value: -4.06170654296875
            name: Negative Mse
      - task:
          type: translation
          name: Translation
        dataset:
          name: en pt br
          type: en-pt-br
        metrics:
          - type: src2trg_accuracy
            value: 0.9858870967741935
            name: Src2Trg Accuracy
          - type: trg2src_accuracy
            value: 0.9808467741935484
            name: Trg2Src Accuracy
          - type: mean_accuracy
            value: 0.983366935483871
            name: Mean Accuracy
      - task:
          type: knowledge-distillation
          name: Knowledge Distillation
        dataset:
          name: en es
          type: en-es
        metrics:
          - type: negative_mse
            value: -4.247319221496582
            name: Negative Mse
      - task:
          type: translation
          name: Translation
        dataset:
          name: en es
          type: en-es
        metrics:
          - type: src2trg_accuracy
            value: 0.908008008008008
            name: Src2Trg Accuracy
          - type: trg2src_accuracy
            value: 0.897997997997998
            name: Trg2Src Accuracy
          - type: mean_accuracy
            value: 0.903003003003003
            name: Mean Accuracy
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts17 es en test
          type: sts17-es-en-test
        metrics:
          - type: pearson_cosine
            value: 0.7713723133430411
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.7861741769541355
            name: Spearman Cosine
      - task:
          type: knowledge-distillation
          name: Knowledge Distillation
        dataset:
          name: en pt
          type: en-pt
        metrics:
          - type: negative_mse
            value: -4.255536079406738
            name: Negative Mse
      - task:
          type: translation
          name: Translation
        dataset:
          name: en pt
          type: en-pt
        metrics:
          - type: src2trg_accuracy
            value: 0.8951160928742994
            name: Src2Trg Accuracy
          - type: trg2src_accuracy
            value: 0.8824059247397918
            name: Trg2Src Accuracy
          - type: mean_accuracy
            value: 0.8887610088070457
            name: Mean Accuracy

SentenceTransformer based on sentence-transformers/paraphrase-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-MiniLM-L6-v2 on the en-pt-br, en-es and en-pt datasets. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/paraphrase-MiniLM-L6-v2
  • Maximum Sequence Length: 128 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity
  • Training Datasets:
  • Languages: en, multilingual, es, pt

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("jvanhoof/all-MiniLM-L6-multilingual-v2-en-es-pt-pt-br")
# Run inference
sentences = [
    'We now call this place home.',
    'Moramos ali. Agora é aqui a nossa casa.',
    'É mais fácil do que se possa imaginar.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Knowledge Distillation

  • Datasets: en-pt-br, en-es and en-pt
  • Evaluated with MSEEvaluator
Metric en-pt-br en-es en-pt
negative_mse -4.0617 -4.2473 -4.2555

Translation

Metric en-pt-br en-es en-pt
src2trg_accuracy 0.9859 0.908 0.8951
trg2src_accuracy 0.9808 0.898 0.8824
mean_accuracy 0.9834 0.903 0.8888

Semantic Similarity

Metric Value
pearson_cosine 0.7714
spearman_cosine 0.7862

Training Details

Training Datasets

en-pt-br

  • Dataset: en-pt-br at 0c70bc6
  • Size: 405,807 training samples
  • Columns: english, non_english, and label
  • Approximate statistics based on the first 1000 samples:
    english non_english label
    type string string list
    details
    • min: 4 tokens
    • mean: 23.98 tokens
    • max: 128 tokens
    • min: 6 tokens
    • mean: 36.86 tokens
    • max: 128 tokens
    • size: 384 elements
  • Samples:
    english non_english label
    And then there are certain conceptual things that can also benefit from hand calculating, but I think they're relatively small in number. E também existem alguns aspectos conceituais que também podem se beneficiar do cálculo manual, mas eu acho que eles são relativamente poucos. [-0.2655501961708069, 0.2715710997581482, 0.13977409899234772, 0.007375418208539486, -0.09395705163478851, ...]
    One thing I often ask about is ancient Greek and how this relates. Uma coisa sobre a qual eu pergunto com frequencia é grego antigo e como ele se relaciona a isto. [0.34961527585983276, -0.01806497573852539, 0.06103038787841797, 0.11750973761081696, -0.34720802307128906, ...]
    See, the thing we're doing right now is we're forcing people to learn mathematics. Vejam, o que estamos fazendo agora, é que estamos forçando as pessoas a aprender matemática. [0.031645823270082474, -0.1787087768316269, -0.30170342326164246, 0.1304805874824524, -0.29176947474479675, ...]
  • Loss: MSELoss

en-es

  • Dataset: en-es
  • Size: 6,889,042 training samples
  • Columns: english, non_english, and label
  • Approximate statistics based on the first 1000 samples:
    english non_english label
    type string string list
    details
    • min: 4 tokens
    • mean: 24.04 tokens
    • max: 128 tokens
    • min: 5 tokens
    • mean: 35.11 tokens
    • max: 128 tokens
    • size: 384 elements
  • Samples:
    english non_english label
    And then there are certain conceptual things that can also benefit from hand calculating, but I think they're relatively small in number. Y luego hay ciertas aspectos conceptuales que pueden beneficiarse del cálculo a mano pero creo que son relativamente pocos. [-0.2655501961708069, 0.2715710997581482, 0.13977409899234772, 0.007375418208539486, -0.09395705163478851, ...]
    One thing I often ask about is ancient Greek and how this relates. Algo que pregunto a menudo es sobre el griego antiguo y cómo se relaciona. [0.34961527585983276, -0.01806497573852539, 0.06103038787841797, 0.11750973761081696, -0.34720802307128906, ...]
    See, the thing we're doing right now is we're forcing people to learn mathematics. Vean, lo que estamos haciendo ahora es forzar a la gente a aprender matemáticas. [0.031645823270082474, -0.1787087768316269, -0.30170342326164246, 0.1304805874824524, -0.29176947474479675, ...]
  • Loss: MSELoss

en-pt

  • Dataset: en-pt
  • Size: 6,636,095 training samples
  • Columns: english, non_english, and label
  • Approximate statistics based on the first 1000 samples:
    english non_english label
    type string string list
    details
    • min: 4 tokens
    • mean: 23.5 tokens
    • max: 128 tokens
    • min: 5 tokens
    • mean: 35.23 tokens
    • max: 128 tokens
    • size: 384 elements
  • Samples:
    english non_english label
    And the country that does this first will, in my view, leapfrog others in achieving a new economy even, an improved economy, an improved outlook. E o país que fizer isto primeiro vai, na minha opinião, ultrapassar outros em alcançar uma nova economia até uma economia melhorada, uma visão melhorada. [-0.1395619511604309, -0.1703503578901291, 0.21396367251873016, -0.29212212562561035, 0.2718254327774048, ...]
    In fact, I even talk about us moving from what we often call now the "knowledge economy" to what we might call a "computational knowledge economy," where high-level math is integral to what everyone does in the way that knowledge currently is. De facto, eu até falo de mudarmos do que chamamos hoje a economia do conhecimento para o que poderemos chamar a economia do conhecimento computacional, onde a matemática de alto nível está integrada no que toda a gente faz da forma que o conhecimento actualmente está. [-0.002996142255142331, -0.34310653805732727, -0.09672430157661438, 0.23709852993488312, -0.013354267925024033, ...]
    We can engage so many more students with this, and they can have a better time doing it. Podemos cativar tantos mais estudantes com isto, e eles podem divertir-se mais a fazê-lo. [0.2670706808567047, 0.09549400955438614, -0.17057836055755615, -0.2152799665927887, -0.2832679748535156, ...]
  • Loss: MSELoss

Evaluation Datasets

en-pt-br

  • Dataset: en-pt-br at 0c70bc6
  • Size: 992 evaluation samples
  • Columns: english, non_english, and label
  • Approximate statistics based on the first 992 samples:
    english non_english label
    type string string list
    details
    • min: 4 tokens
    • mean: 24.37 tokens
    • max: 128 tokens
    • min: 5 tokens
    • mean: 38.6 tokens
    • max: 128 tokens
    • size: 384 elements
  • Samples:
    english non_english label
    Thank you so much, Chris. Muito obrigado, Chris. [-0.1929965764284134, 0.051721055060625076, 0.3780047297477722, -0.20386895537376404, -0.2625442445278168, ...]
    And it's truly a great honor to have the opportunity to come to this stage twice; I'm extremely grateful. É realmente uma grande honra ter a oportunidade de estar neste palco pela segunda vez. Estou muito agradecido. [0.04667849838733673, 0.16640479862689972, 0.05405835807323456, -0.2507464587688446, -0.5305444002151489, ...]
    I have been blown away by this conference, and I want to thank all of you for the many nice comments about what I had to say the other night. Eu fui muito aplaudido por esta conferência e quero agradecer a todos pelos muitos comentários delicados sobre o que eu tinha a dizer naquela noite. [0.04410325363278389, 0.2660813629627228, -0.013608227483928204, 0.08376947790384293, 0.22691071033477783, ...]
  • Loss: MSELoss

en-es

  • Dataset: en-es
  • Size: 9,990 evaluation samples
  • Columns: english, non_english, and label
  • Approximate statistics based on the first 1000 samples:
    english non_english label
    type string string list
    details
    • min: 4 tokens
    • mean: 24.39 tokens
    • max: 128 tokens
    • min: 4 tokens
    • mean: 36.38 tokens
    • max: 128 tokens
    • size: 384 elements
  • Samples:
    english non_english label
    Thank you so much, Chris. Muchas gracias Chris. [-0.19299663603305817, 0.051721103489398956, 0.37800467014312744, -0.20386885106563568, -0.2625444531440735, ...]
    And it's truly a great honor to have the opportunity to come to this stage twice; I'm extremely grateful. Y es en verdad un gran honor tener la oportunidad de venir a este escenario por segunda vez. Estoy extremadamente agradecido. [0.04667845368385315, 0.16640479862689972, 0.05405828729271889, -0.25074639916419983, -0.5305443406105042, ...]
    I have been blown away by this conference, and I want to thank all of you for the many nice comments about what I had to say the other night. He quedado conmovido por esta conferencia, y deseo agradecer a todos ustedes sus amables comentarios acerca de lo que tenía que decir la otra noche. [0.04410335421562195, 0.2660813629627228, -0.01360794436186552, 0.08376938849687576, 0.22691065073013306, ...]
  • Loss: MSELoss

en-pt

  • Dataset: en-pt
  • Size: 9,992 evaluation samples
  • Columns: english, non_english, and label
  • Approximate statistics based on the first 1000 samples:
    english non_english label
    type string string list
    details
    • min: 4 tokens
    • mean: 23.82 tokens
    • max: 128 tokens
    • min: 5 tokens
    • mean: 36.7 tokens
    • max: 128 tokens
    • size: 384 elements
  • Samples:
    english non_english label
    Thank you so much, Chris. Muito obrigado, Chris. [-0.19299663603305817, 0.051721103489398956, 0.37800467014312744, -0.20386885106563568, -0.2625444531440735, ...]
    And it's truly a great honor to have the opportunity to come to this stage twice; I'm extremely grateful. É realmente uma grande honra ter a oportunidade de pisar este palco pela segunda vez. Estou muito agradecido. [0.04667849838733673, 0.16640479862689972, 0.05405835807323456, -0.2507464587688446, -0.5305444002151489, ...]
    I have been blown away by this conference, and I want to thank all of you for the many nice comments about what I had to say the other night. Fiquei muito impressionado com esta conferência e quero agradecer a todos os imensos comentários simpáticos sobre o que eu tinha a dizer naquela noite. [0.04410335421562195, 0.2660813629627228, -0.01360794436186552, 0.08376938849687576, 0.22691065073013306, ...]
  • Loss: MSELoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • gradient_accumulation_steps: 8
  • num_train_epochs: 6
  • warmup_ratio: 0.15
  • bf16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 8
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 6
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.15
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss en-pt-br loss en-es loss en-pt loss en-pt-br_negative_mse en-pt-br_mean_accuracy en-es_negative_mse en-es_mean_accuracy sts17-es-en-test_spearman_cosine en-pt_negative_mse en-pt_mean_accuracy
0.0074 100 0.0512 - - - - - - - - - -
0.0147 200 0.0505 - - - - - - - - - -
0.0221 300 0.0496 - - - - - - - - - -
0.0294 400 0.0489 - - - - - - - - - -
0.0368 500 0.0483 - - - - - - - - - -
0.0441 600 0.0479 - - - - - - - - - -
0.0515 700 0.0476 - - - - - - - - - -
0.0588 800 0.0474 - - - - - - - - - -
0.0662 900 0.0471 - - - - - - - - - -
0.0735 1000 0.0469 - - - - - - - - - -
0.0809 1100 0.0467 - - - - - - - - - -
0.0882 1200 0.0464 - - - - - - - - - -
0.0956 1300 0.0461 - - - - - - - - - -
0.1029 1400 0.046 - - - - - - - - - -
0.1103 1500 0.0458 - - - - - - - - - -
0.1176 1600 0.0456 - - - - - - - - - -
0.1250 1700 0.0455 - - - - - - - - - -
0.1323 1800 0.0454 - - - - - - - - - -
0.1397 1900 0.0452 - - - - - - - - - -
0.1470 2000 0.0452 0.0441 0.0454 0.0455 -4.785339 0.5978 -4.9081144 0.5252 0.2460 -4.929552 0.4744
0.1544 2100 0.0449 - - - - - - - - - -
0.1617 2200 0.0449 - - - - - - - - - -
0.1691 2300 0.0448 - - - - - - - - - -
0.1764 2400 0.0447 - - - - - - - - - -
0.1838 2500 0.0446 - - - - - - - - - -
0.1911 2600 0.0445 - - - - - - - - - -
0.1985 2700 0.0443 - - - - - - - - - -
0.2058 2800 0.0443 - - - - - - - - - -
0.2132 2900 0.0442 - - - - - - - - - -
0.2205 3000 0.0441 - - - - - - - - - -
0.2279 3100 0.0441 - - - - - - - - - -
0.2352 3200 0.0439 - - - - - - - - - -
0.2426 3300 0.0439 - - - - - - - - - -
0.2499 3400 0.0439 - - - - - - - - - -
0.2573 3500 0.0438 - - - - - - - - - -
0.2646 3600 0.0437 - - - - - - - - - -
0.2720 3700 0.0436 - - - - - - - - - -
0.2793 3800 0.0435 - - - - - - - - - -
0.2867 3900 0.0436 - - - - - - - - - -
0.2940 4000 0.0435 0.0424 0.0437 0.0438 -4.5627975 0.8054 -4.6922235 0.7096 0.3575 -4.715491 0.6680
0.3014 4100 0.0434 - - - - - - - - - -
0.3087 4200 0.0432 - - - - - - - - - -
0.3161 4300 0.0433 - - - - - - - - - -
0.3234 4400 0.0432 - - - - - - - - - -
0.3308 4500 0.0432 - - - - - - - - - -
0.3381 4600 0.0431 - - - - - - - - - -
0.3455 4700 0.0431 - - - - - - - - - -
0.3528 4800 0.043 - - - - - - - - - -
0.3602 4900 0.043 - - - - - - - - - -
0.3675 5000 0.043 - - - - - - - - - -
0.3749 5100 0.0429 - - - - - - - - - -
0.3822 5200 0.0429 - - - - - - - - - -
0.3896 5300 0.0427 - - - - - - - - - -
0.3969 5400 0.0428 - - - - - - - - - -
0.4043 5500 0.0428 - - - - - - - - - -
0.4116 5600 0.0427 - - - - - - - - - -
0.4190 5700 0.0426 - - - - - - - - - -
0.4263 5800 0.0427 - - - - - - - - - -
0.4337 5900 0.0427 - - - - - - - - - -
0.4410 6000 0.0425 0.0414 0.0428 0.0429 -4.415331 0.8997 -4.566894 0.7969 0.4509 -4.5856175 0.7684
0.4484 6100 0.0425 - - - - - - - - - -
0.4557 6200 0.0425 - - - - - - - - - -
0.4631 6300 0.0426 - - - - - - - - - -
0.4704 6400 0.0424 - - - - - - - - - -
0.4778 6500 0.0424 - - - - - - - - - -
0.4851 6600 0.0424 - - - - - - - - - -
0.4925 6700 0.0423 - - - - - - - - - -
0.4998 6800 0.0425 - - - - - - - - - -
0.5072 6900 0.0423 - - - - - - - - - -
0.5145 7000 0.0422 - - - - - - - - - -
0.5219 7100 0.0423 - - - - - - - - - -
0.5292 7200 0.0422 - - - - - - - - - -
0.5366 7300 0.0422 - - - - - - - - - -
0.5439 7400 0.0422 - - - - - - - - - -
0.5513 7500 0.0422 - - - - - - - - - -
0.5586 7600 0.0421 - - - - - - - - - -
0.5660 7700 0.0421 - - - - - - - - - -
0.5733 7800 0.0421 - - - - - - - - - -
0.5807 7900 0.0421 - - - - - - - - - -
0.5880 8000 0.0421 0.0409 0.0423 0.0424 -4.325846 0.9400 -4.488157 0.8366 0.5334 -4.5032544 0.8170
0.5954 8100 0.0421 - - - - - - - - - -
0.6027 8200 0.042 - - - - - - - - - -
0.6101 8300 0.042 - - - - - - - - - -
0.6174 8400 0.042 - - - - - - - - - -
0.6248 8500 0.0421 - - - - - - - - - -
0.6321 8600 0.0419 - - - - - - - - - -
0.6395 8700 0.042 - - - - - - - - - -
0.6468 8800 0.0419 - - - - - - - - - -
0.6542 8900 0.0419 - - - - - - - - - -
0.6615 9000 0.0419 - - - - - - - - - -
0.6689 9100 0.0418 - - - - - - - - - -
0.6762 9200 0.0418 - - - - - - - - - -
0.6836 9300 0.0418 - - - - - - - - - -
0.6909 9400 0.0418 - - - - - - - - - -
0.6983 9500 0.0418 - - - - - - - - - -
0.7056 9600 0.0417 - - - - - - - - - -
0.7130 9700 0.0417 - - - - - - - - - -
0.7203 9800 0.0417 - - - - - - - - - -
0.7277 9900 0.0417 - - - - - - - - - -
0.7350 10000 0.0417 0.0405 0.0420 0.0420 -4.2650604 0.9526 -4.434938 0.8587 0.6200 -4.4468904 0.8390
0.7424 10100 0.0416 - - - - - - - - - -
0.7497 10200 0.0417 - - - - - - - - - -
0.7571 10300 0.0416 - - - - - - - - - -
0.7644 10400 0.0416 - - - - - - - - - -
0.7718 10500 0.0416 - - - - - - - - - -
0.7791 10600 0.0416 - - - - - - - - - -
0.7865 10700 0.0416 - - - - - - - - - -
0.7938 10800 0.0416 - - - - - - - - - -
0.8012 10900 0.0415 - - - - - - - - - -
0.8085 11000 0.0416 - - - - - - - - - -
0.8159 11100 0.0415 - - - - - - - - - -
0.8232 11200 0.0415 - - - - - - - - - -
0.8306 11300 0.0415 - - - - - - - - - -
0.8380 11400 0.0415 - - - - - - - - - -
0.8453 11500 0.0415 - - - - - - - - - -
0.8527 11600 0.0415 - - - - - - - - - -
0.8600 11700 0.0414 - - - - - - - - - -
0.8674 11800 0.0414 - - - - - - - - - -
0.8747 11900 0.0414 - - - - - - - - - -
0.8821 12000 0.0414 0.0402 0.0417 0.0417 -4.2234926 0.9637 -4.3952775 0.8716 0.6684 -4.404395 0.8526
0.8894 12100 0.0414 - - - - - - - - - -
0.8968 12200 0.0414 - - - - - - - - - -
0.9041 12300 0.0414 - - - - - - - - - -
0.9115 12400 0.0414 - - - - - - - - - -
0.9188 12500 0.0413 - - - - - - - - - -
0.9262 12600 0.0413 - - - - - - - - - -
0.9335 12700 0.0414 - - - - - - - - - -
0.9409 12800 0.0414 - - - - - - - - - -
0.9482 12900 0.0413 - - - - - - - - - -
0.9556 13000 0.0413 - - - - - - - - - -
0.9629 13100 0.0413 - - - - - - - - - -
0.9703 13200 0.0413 - - - - - - - - - -
0.9776 13300 0.0413 - - - - - - - - - -
0.9850 13400 0.0413 - - - - - - - - - -
0.9923 13500 0.0412 - - - - - - - - - -
0.9997 13600 0.0413 - - - - - - - - - -
1.0070 13700 0.0413 - - - - - - - - - -
1.0144 13800 0.0413 - - - - - - - - - -
1.0217 13900 0.0412 - - - - - - - - - -
1.0291 14000 0.0412 0.0400 0.0415 0.0416 -4.194809 0.9682 -4.36698 0.8798 0.6892 -4.37619 0.8621
1.0364 14100 0.0412 - - - - - - - - - -
1.0438 14200 0.0412 - - - - - - - - - -
1.0511 14300 0.0412 - - - - - - - - - -
1.0585 14400 0.0412 - - - - - - - - - -
1.0658 14500 0.0412 - - - - - - - - - -
1.0732 14600 0.0412 - - - - - - - - - -
1.0805 14700 0.0412 - - - - - - - - - -
1.0879 14800 0.0412 - - - - - - - - - -
1.0952 14900 0.0411 - - - - - - - - - -
1.1026 15000 0.0411 - - - - - - - - - -
1.1099 15100 0.0411 - - - - - - - - - -
1.1173 15200 0.0411 - - - - - - - - - -
1.1246 15300 0.0411 - - - - - - - - - -
1.1320 15400 0.0411 - - - - - - - - - -
1.1393 15500 0.041 - - - - - - - - - -
1.1467 15600 0.0412 - - - - - - - - - -
1.1540 15700 0.041 - - - - - - - - - -
1.1614 15800 0.0411 - - - - - - - - - -
1.1687 15900 0.0412 - - - - - - - - - -
1.1761 16000 0.0411 0.0399 0.0414 0.0414 -4.1725326 0.9728 -4.347921 0.8845 0.7072 -4.3567324 0.8679
1.1834 16100 0.0411 - - - - - - - - - -
1.1908 16200 0.0411 - - - - - - - - - -
1.1981 16300 0.041 - - - - - - - - - -
1.2055 16400 0.041 - - - - - - - - - -
1.2128 16500 0.0411 - - - - - - - - - -
1.2202 16600 0.041 - - - - - - - - - -
1.2275 16700 0.0411 - - - - - - - - - -
1.2349 16800 0.041 - - - - - - - - - -
1.2422 16900 0.041 - - - - - - - - - -
1.2496 17000 0.041 - - - - - - - - - -
1.2569 17100 0.041 - - - - - - - - - -
1.2643 17200 0.041 - - - - - - - - - -
1.2716 17300 0.041 - - - - - - - - - -
1.2790 17400 0.041 - - - - - - - - - -
1.2863 17500 0.041 - - - - - - - - - -
1.2937 17600 0.041 - - - - - - - - - -
1.3010 17700 0.041 - - - - - - - - - -
1.3084 17800 0.0409 - - - - - - - - - -
1.3157 17900 0.041 - - - - - - - - - -
1.3231 18000 0.041 0.0398 0.0413 0.0413 -4.156324 0.9733 -4.3334045 0.8877 0.7126 -4.3421884 0.8721
1.3304 18100 0.041 - - - - - - - - - -
1.3378 18200 0.0409 - - - - - - - - - -
1.3451 18300 0.0409 - - - - - - - - - -
1.3525 18400 0.0409 - - - - - - - - - -
1.3598 18500 0.0409 - - - - - - - - - -
1.3672 18600 0.0409 - - - - - - - - - -
1.3745 18700 0.041 - - - - - - - - - -
1.3819 18800 0.0409 - - - - - - - - - -
1.3892 18900 0.0408 - - - - - - - - - -
1.3966 19000 0.0409 - - - - - - - - - -
1.4039 19100 0.0409 - - - - - - - - - -
1.4113 19200 0.0409 - - - - - - - - - -
1.4186 19300 0.0408 - - - - - - - - - -
1.4260 19400 0.0409 - - - - - - - - - -
1.4333 19500 0.0409 - - - - - - - - - -
1.4407 19600 0.0408 - - - - - - - - - -
1.4480 19700 0.0409 - - - - - - - - - -
1.4554 19800 0.0409 - - - - - - - - - -
1.4627 19900 0.0409 - - - - - - - - - -
1.4701 20000 0.0409 0.0397 0.0413 0.0413 -4.1426473 0.9763 -4.321089 0.8898 0.7271 -4.3293304 0.8749
1.4774 20100 0.0408 - - - - - - - - - -
1.4848 20200 0.0409 - - - - - - - - - -
1.4921 20300 0.0409 - - - - - - - - - -
1.4995 20400 0.0409 - - - - - - - - - -
1.5068 20500 0.0409 - - - - - - - - - -
1.5142 20600 0.0408 - - - - - - - - - -
1.5215 20700 0.0409 - - - - - - - - - -
1.5289 20800 0.0408 - - - - - - - - - -
1.5362 20900 0.0409 - - - - - - - - - -
1.5436 21000 0.0409 - - - - - - - - - -
1.5509 21100 0.0409 - - - - - - - - - -
1.5583 21200 0.0408 - - - - - - - - - -
1.5656 21300 0.0408 - - - - - - - - - -
1.5730 21400 0.0408 - - - - - - - - - -
1.5803 21500 0.0408 - - - - - - - - - -
1.5877 21600 0.0409 - - - - - - - - - -
1.5950 21700 0.0409 - - - - - - - - - -
1.6024 21800 0.0408 - - - - - - - - - -
1.6097 21900 0.0409 - - - - - - - - - -
1.6171 22000 0.0408 0.0397 0.0412 0.0412 -4.1324744 0.9768 -4.312636 0.8920 0.7339 -4.320667 0.8767
1.6244 22100 0.0409 - - - - - - - - - -
1.6318 22200 0.0408 - - - - - - - - - -
1.6391 22300 0.0409 - - - - - - - - - -
1.6465 22400 0.0408 - - - - - - - - - -
1.6538 22500 0.0408 - - - - - - - - - -
1.6612 22600 0.0408 - - - - - - - - - -
1.6686 22700 0.0408 - - - - - - - - - -
1.6759 22800 0.0408 - - - - - - - - - -
1.6833 22900 0.0407 - - - - - - - - - -
1.6906 23000 0.0408 - - - - - - - - - -
1.6980 23100 0.0408 - - - - - - - - - -
1.7053 23200 0.0407 - - - - - - - - - -
1.7127 23300 0.0408 - - - - - - - - - -
1.7200 23400 0.0408 - - - - - - - - - -
1.7274 23500 0.0408 - - - - - - - - - -
1.7347 23600 0.0408 - - - - - - - - - -
1.7421 23700 0.0408 - - - - - - - - - -
1.7494 23800 0.0408 - - - - - - - - - -
1.7568 23900 0.0407 - - - - - - - - - -
1.7641 24000 0.0408 0.0396 0.0411 0.0412 -4.1245446 0.9748 -4.304793 0.8929 0.7383 -4.312529 0.8785
1.7715 24100 0.0407 - - - - - - - - - -
1.7788 24200 0.0408 - - - - - - - - - -
1.7862 24300 0.0408 - - - - - - - - - -
1.7935 24400 0.0407 - - - - - - - - - -
1.8009 24500 0.0407 - - - - - - - - - -
1.8082 24600 0.0408 - - - - - - - - - -
1.8156 24700 0.0407 - - - - - - - - - -
1.8229 24800 0.0408 - - - - - - - - - -
1.8303 24900 0.0407 - - - - - - - - - -
1.8376 25000 0.0408 - - - - - - - - - -
1.8450 25100 0.0408 - - - - - - - - - -
1.8523 25200 0.0407 - - - - - - - - - -
1.8597 25300 0.0407 - - - - - - - - - -
1.8670 25400 0.0407 - - - - - - - - - -
1.8744 25500 0.0407 - - - - - - - - - -
1.8817 25600 0.0407 - - - - - - - - - -
1.8891 25700 0.0408 - - - - - - - - - -
1.8964 25800 0.0407 - - - - - - - - - -
1.9038 25900 0.0407 - - - - - - - - - -
1.9111 26000 0.0407 0.0396 0.0411 0.0411 -4.115908 0.9793 -4.2973475 0.8952 0.7492 -4.3051677 0.8805
1.9185 26100 0.0407 - - - - - - - - - -
1.9258 26200 0.0407 - - - - - - - - - -
1.9332 26300 0.0408 - - - - - - - - - -
1.9405 26400 0.0407 - - - - - - - - - -
1.9479 26500 0.0407 - - - - - - - - - -
1.9552 26600 0.0407 - - - - - - - - - -
1.9626 26700 0.0407 - - - - - - - - - -
1.9699 26800 0.0407 - - - - - - - - - -
1.9773 26900 0.0407 - - - - - - - - - -
1.9846 27000 0.0407 - - - - - - - - - -
1.9920 27100 0.0407 - - - - - - - - - -
1.9993 27200 0.0407 - - - - - - - - - -
2.0067 27300 0.0407 - - - - - - - - - -
2.0140 27400 0.0407 - - - - - - - - - -
2.0214 27500 0.0407 - - - - - - - - - -
2.0287 27600 0.0407 - - - - - - - - - -
2.0361 27700 0.0407 - - - - - - - - - -
2.0434 27800 0.0406 - - - - - - - - - -
2.0508 27900 0.0407 - - - - - - - - - -
2.0581 28000 0.0407 0.0395 0.0411 0.0411 -4.1113133 0.9793 -4.291781 0.8963 0.7503 -4.3004823 0.8823
2.0655 28100 0.0407 - - - - - - - - - -
2.0728 28200 0.0407 - - - - - - - - - -
2.0802 28300 0.0407 - - - - - - - - - -
2.0875 28400 0.0407 - - - - - - - - - -
2.0949 28500 0.0406 - - - - - - - - - -
2.1022 28600 0.0406 - - - - - - - - - -
2.1096 28700 0.0407 - - - - - - - - - -
2.1169 28800 0.0406 - - - - - - - - - -
2.1243 28900 0.0406 - - - - - - - - - -
2.1316 29000 0.0407 - - - - - - - - - -
2.1390 29100 0.0406 - - - - - - - - - -
2.1463 29200 0.0407 - - - - - - - - - -
2.1537 29300 0.0405 - - - - - - - - - -
2.1610 29400 0.0406 - - - - - - - - - -
2.1684 29500 0.0407 - - - - - - - - - -
2.1757 29600 0.0407 - - - - - - - - - -
2.1831 29700 0.0406 - - - - - - - - - -
2.1904 29800 0.0407 - - - - - - - - - -
2.1978 29900 0.0406 - - - - - - - - - -
2.2051 30000 0.0406 0.0395 0.0410 0.0410 -4.103692 0.9783 -4.286089 0.8967 0.7587 -4.2947936 0.8821
2.2125 30100 0.0406 - - - - - - - - - -
2.2198 30200 0.0406 - - - - - - - - - -
2.2272 30300 0.0407 - - - - - - - - - -
2.2345 30400 0.0406 - - - - - - - - - -
2.2419 30500 0.0406 - - - - - - - - - -
2.2492 30600 0.0406 - - - - - - - - - -
2.2566 30700 0.0406 - - - - - - - - - -
2.2639 30800 0.0406 - - - - - - - - - -
2.2713 30900 0.0406 - - - - - - - - - -
2.2786 31000 0.0406 - - - - - - - - - -
2.2860 31100 0.0407 - - - - - - - - - -
2.2933 31200 0.0406 - - - - - - - - - -
2.3007 31300 0.0406 - - - - - - - - - -
2.3080 31400 0.0405 - - - - - - - - - -
2.3154 31500 0.0406 - - - - - - - - - -
2.3227 31600 0.0406 - - - - - - - - - -
2.3301 31700 0.0406 - - - - - - - - - -
2.3374 31800 0.0406 - - - - - - - - - -
2.3448 31900 0.0406 - - - - - - - - - -
2.3521 32000 0.0406 0.0394 0.0410 0.0410 -4.0995665 0.9788 -4.282365 0.8976 0.7618 -4.291147 0.8826
2.3595 32100 0.0406 - - - - - - - - - -
2.3668 32200 0.0406 - - - - - - - - - -
2.3742 32300 0.0406 - - - - - - - - - -
2.3815 32400 0.0406 - - - - - - - - - -
2.3889 32500 0.0405 - - - - - - - - - -
2.3962 32600 0.0406 - - - - - - - - - -
2.4036 32700 0.0406 - - - - - - - - - -
2.4109 32800 0.0406 - - - - - - - - - -
2.4183 32900 0.0405 - - - - - - - - - -
2.4256 33000 0.0406 - - - - - - - - - -
2.4330 33100 0.0406 - - - - - - - - - -
2.4403 33200 0.0405 - - - - - - - - - -
2.4477 33300 0.0406 - - - - - - - - - -
2.4550 33400 0.0406 - - - - - - - - - -
2.4624 33500 0.0406 - - - - - - - - - -
2.4697 33600 0.0405 - - - - - - - - - -
2.4771 33700 0.0405 - - - - - - - - - -
2.4844 33800 0.0406 - - - - - - - - - -
2.4918 33900 0.0406 - - - - - - - - - -
2.4992 34000 0.0406 0.0394 0.0410 0.0410 -4.0955496 0.9798 -4.278625 0.8985 0.7684 -4.2872252 0.8832
2.5065 34100 0.0406 - - - - - - - - - -
2.5139 34200 0.0405 - - - - - - - - - -
2.5212 34300 0.0406 - - - - - - - - - -
2.5286 34400 0.0405 - - - - - - - - - -
2.5359 34500 0.0405 - - - - - - - - - -
2.5433 34600 0.0406 - - - - - - - - - -
2.5506 34700 0.0406 - - - - - - - - - -
2.5580 34800 0.0405 - - - - - - - - - -
2.5653 34900 0.0405 - - - - - - - - - -
2.5727 35000 0.0406 - - - - - - - - - -
2.5800 35100 0.0406 - - - - - - - - - -
2.5874 35200 0.0406 - - - - - - - - - -
2.5947 35300 0.0406 - - - - - - - - - -
2.6021 35400 0.0406 - - - - - - - - - -
2.6094 35500 0.0406 - - - - - - - - - -
2.6168 35600 0.0406 - - - - - - - - - -
2.6241 35700 0.0406 - - - - - - - - - -
2.6315 35800 0.0406 - - - - - - - - - -
2.6388 35900 0.0406 - - - - - - - - - -
2.6462 36000 0.0405 0.0394 0.0410 0.0410 -4.091509 0.9808 -4.2755327 0.8986 0.7703 -4.283869 0.8847
2.6535 36100 0.0406 - - - - - - - - - -
2.6609 36200 0.0405 - - - - - - - - - -
2.6682 36300 0.0406 - - - - - - - - - -
2.6756 36400 0.0405 - - - - - - - - - -
2.6829 36500 0.0405 - - - - - - - - - -
2.6903 36600 0.0406 - - - - - - - - - -
2.6976 36700 0.0405 - - - - - - - - - -
2.7050 36800 0.0405 - - - - - - - - - -
2.7123 36900 0.0405 - - - - - - - - - -
2.7197 37000 0.0405 - - - - - - - - - -
2.7270 37100 0.0406 - - - - - - - - - -
2.7344 37200 0.0406 - - - - - - - - - -
2.7417 37300 0.0405 - - - - - - - - - -
2.7491 37400 0.0405 - - - - - - - - - -
2.7564 37500 0.0405 - - - - - - - - - -
2.7638 37600 0.0405 - - - - - - - - - -
2.7711 37700 0.0405 - - - - - - - - - -
2.7785 37800 0.0405 - - - - - - - - - -
2.7858 37900 0.0405 - - - - - - - - - -
2.7932 38000 0.0405 0.0394 0.0409 0.0410 -4.0881968 0.9819 -4.2728844 0.8990 0.7717 -4.281445 0.8851
2.8005 38100 0.0405 - - - - - - - - - -
2.8079 38200 0.0406 - - - - - - - - - -
2.8152 38300 0.0405 - - - - - - - - - -
2.8226 38400 0.0406 - - - - - - - - - -
2.8299 38500 0.0405 - - - - - - - - - -
2.8373 38600 0.0405 - - - - - - - - - -
2.8446 38700 0.0406 - - - - - - - - - -
2.8520 38800 0.0405 - - - - - - - - - -
2.8593 38900 0.0405 - - - - - - - - - -
2.8667 39000 0.0404 - - - - - - - - - -
2.8740 39100 0.0405 - - - - - - - - - -
2.8814 39200 0.0405 - - - - - - - - - -
2.8887 39300 0.0405 - - - - - - - - - -
2.8961 39400 0.0405 - - - - - - - - - -
2.9034 39500 0.0405 - - - - - - - - - -
2.9108 39600 0.0405 - - - - - - - - - -
2.9181 39700 0.0405 - - - - - - - - - -
2.9255 39800 0.0405 - - - - - - - - - -
2.9328 39900 0.0406 - - - - - - - - - -
2.9402 40000 0.0405 0.0393 0.0409 0.0409 -4.0840244 0.9824 -4.2690845 0.9001 0.7744 -4.277667 0.8853
2.9475 40100 0.0405 - - - - - - - - - -
2.9549 40200 0.0405 - - - - - - - - - -
2.9622 40300 0.0405 - - - - - - - - - -
2.9696 40400 0.0405 - - - - - - - - - -
2.9769 40500 0.0405 - - - - - - - - - -
2.9843 40600 0.0405 - - - - - - - - - -
2.9916 40700 0.0405 - - - - - - - - - -
2.9990 40800 0.0405 - - - - - - - - - -
3.0063 40900 0.0405 - - - - - - - - - -
3.0137 41000 0.0405 - - - - - - - - - -
3.0210 41100 0.0405 - - - - - - - - - -
3.0284 41200 0.0405 - - - - - - - - - -
3.0357 41300 0.0405 - - - - - - - - - -
3.0431 41400 0.0404 - - - - - - - - - -
3.0504 41500 0.0405 - - - - - - - - - -
3.0578 41600 0.0405 - - - - - - - - - -
3.0651 41700 0.0405 - - - - - - - - - -
3.0725 41800 0.0405 - - - - - - - - - -
3.0798 41900 0.0406 - - - - - - - - - -
3.0872 42000 0.0405 0.0393 0.0409 0.0409 -4.0831747 0.9819 -4.267492 0.9003 0.7798 -4.2760205 0.8860
3.0945 42100 0.0404 - - - - - - - - - -
3.1019 42200 0.0405 - - - - - - - - - -
3.1092 42300 0.0405 - - - - - - - - - -
3.1166 42400 0.0405 - - - - - - - - - -
3.1239 42500 0.0405 - - - - - - - - - -
3.1313 42600 0.0405 - - - - - - - - - -
3.1386 42700 0.0404 - - - - - - - - - -
3.1460 42800 0.0405 - - - - - - - - - -
3.1533 42900 0.0404 - - - - - - - - - -
3.1607 43000 0.0405 - - - - - - - - - -
3.1680 43100 0.0405 - - - - - - - - - -
3.1754 43200 0.0405 - - - - - - - - - -
3.1827 43300 0.0405 - - - - - - - - - -
3.1901 43400 0.0405 - - - - - - - - - -
3.1974 43500 0.0404 - - - - - - - - - -
3.2048 43600 0.0405 - - - - - - - - - -
3.2121 43700 0.0405 - - - - - - - - - -
3.2195 43800 0.0405 - - - - - - - - - -
3.2268 43900 0.0405 - - - - - - - - - -
3.2342 44000 0.0405 0.0393 0.0409 0.0409 -4.0802045 0.9824 -4.2650237 0.9005 0.7727 -4.2733293 0.8865
3.2415 44100 0.0404 - - - - - - - - - -
3.2489 44200 0.0405 - - - - - - - - - -
3.2562 44300 0.0405 - - - - - - - - - -
3.2636 44400 0.0404 - - - - - - - - - -
3.2709 44500 0.0405 - - - - - - - - - -
3.2783 44600 0.0404 - - - - - - - - - -
3.2856 44700 0.0405 - - - - - - - - - -
3.2930 44800 0.0405 - - - - - - - - - -
3.3003 44900 0.0405 - - - - - - - - - -
3.3077 45000 0.0404 - - - - - - - - - -
3.3150 45100 0.0404 - - - - - - - - - -
3.3224 45200 0.0404 - - - - - - - - - -
3.3297 45300 0.0404 - - - - - - - - - -
3.3371 45400 0.0405 - - - - - - - - - -
3.3445 45500 0.0404 - - - - - - - - - -
3.3518 45600 0.0405 - - - - - - - - - -
3.3592 45700 0.0404 - - - - - - - - - -
3.3665 45800 0.0404 - - - - - - - - - -
3.3739 45900 0.0405 - - - - - - - - - -
3.3812 46000 0.0405 0.0393 0.0409 0.0409 -4.078617 0.9829 -4.2630715 0.9009 0.7804 -4.271867 0.8867
3.3886 46100 0.0403 - - - - - - - - - -
3.3959 46200 0.0404 - - - - - - - - - -
3.4033 46300 0.0405 - - - - - - - - - -
3.4106 46400 0.0404 - - - - - - - - - -
3.4180 46500 0.0404 - - - - - - - - - -
3.4253 46600 0.0404 - - - - - - - - - -
3.4327 46700 0.0405 - - - - - - - - - -
3.4400 46800 0.0404 - - - - - - - - - -
3.4474 46900 0.0404 - - - - - - - - - -
3.4547 47000 0.0404 - - - - - - - - - -
3.4621 47100 0.0405 - - - - - - - - - -
3.4694 47200 0.0404 - - - - - - - - - -
3.4768 47300 0.0404 - - - - - - - - - -
3.4841 47400 0.0405 - - - - - - - - - -
3.4915 47500 0.0404 - - - - - - - - - -
3.4988 47600 0.0405 - - - - - - - - - -
3.5062 47700 0.0405 - - - - - - - - - -
3.5135 47800 0.0404 - - - - - - - - - -
3.5209 47900 0.0404 - - - - - - - - - -
3.5282 48000 0.0404 0.0393 0.0409 0.0409 -4.075687 0.9824 -4.260863 0.9012 0.7801 -4.2693996 0.8870
3.5356 48100 0.0404 - - - - - - - - - -
3.5429 48200 0.0405 - - - - - - - - - -
3.5503 48300 0.0405 - - - - - - - - - -
3.5576 48400 0.0404 - - - - - - - - - -
3.5650 48500 0.0404 - - - - - - - - - -
3.5723 48600 0.0404 - - - - - - - - - -
3.5797 48700 0.0404 - - - - - - - - - -
3.5870 48800 0.0405 - - - - - - - - - -
3.5944 48900 0.0405 - - - - - - - - - -
3.6017 49000 0.0405 - - - - - - - - - -
3.6091 49100 0.0405 - - - - - - - - - -
3.6164 49200 0.0404 - - - - - - - - - -
3.6238 49300 0.0405 - - - - - - - - - -
3.6311 49400 0.0405 - - - - - - - - - -
3.6385 49500 0.0404 - - - - - - - - - -
3.6458 49600 0.0404 - - - - - - - - - -
3.6532 49700 0.0404 - - - - - - - - - -
3.6605 49800 0.0404 - - - - - - - - - -
3.6679 49900 0.0404 - - - - - - - - - -
3.6752 50000 0.0404 0.0393 0.0409 0.0409 -4.074522 0.9824 -4.2595944 0.9015 0.7800 -4.2678404 0.8869
3.6826 50100 0.0404 - - - - - - - - - -
3.6899 50200 0.0404 - - - - - - - - - -
3.6973 50300 0.0404 - - - - - - - - - -
3.7046 50400 0.0404 - - - - - - - - - -
3.7120 50500 0.0404 - - - - - - - - - -
3.7193 50600 0.0404 - - - - - - - - - -
3.7267 50700 0.0404 - - - - - - - - - -
3.7340 50800 0.0405 - - - - - - - - - -
3.7414 50900 0.0404 - - - - - - - - - -
3.7487 51000 0.0404 - - - - - - - - - -
3.7561 51100 0.0404 - - - - - - - - - -
3.7634 51200 0.0404 - - - - - - - - - -
3.7708 51300 0.0404 - - - - - - - - - -
3.7781 51400 0.0404 - - - - - - - - - -
3.7855 51500 0.0404 - - - - - - - - - -
3.7928 51600 0.0404 - - - - - - - - - -
3.8002 51700 0.0404 - - - - - - - - - -
3.8075 51800 0.0405 - - - - - - - - - -
3.8149 51900 0.0404 - - - - - - - - - -
3.8222 52000 0.0405 0.0393 0.0408 0.0409 -4.0725245 0.9829 -4.258272 0.9010 0.7804 -4.2663693 0.8873
3.8296 52100 0.0404 - - - - - - - - - -
3.8369 52200 0.0404 - - - - - - - - - -
3.8443 52300 0.0404 - - - - - - - - - -
3.8516 52400 0.0404 - - - - - - - - - -
3.8590 52500 0.0404 - - - - - - - - - -
3.8663 52600 0.0403 - - - - - - - - - -
3.8737 52700 0.0404 - - - - - - - - - -
3.8810 52800 0.0404 - - - - - - - - - -
3.8884 52900 0.0404 - - - - - - - - - -
3.8957 53000 0.0404 - - - - - - - - - -
3.9031 53100 0.0404 - - - - - - - - - -
3.9104 53200 0.0404 - - - - - - - - - -
3.9178 53300 0.0404 - - - - - - - - - -
3.9251 53400 0.0404 - - - - - - - - - -
3.9325 53500 0.0405 - - - - - - - - - -
3.9398 53600 0.0404 - - - - - - - - - -
3.9472 53700 0.0404 - - - - - - - - - -
3.9545 53800 0.0404 - - - - - - - - - -
3.9619 53900 0.0404 - - - - - - - - - -
3.9692 54000 0.0404 0.0393 0.0408 0.0408 -4.0710397 0.9834 -4.2558665 0.9017 0.7822 -4.264339 0.8871
3.9766 54100 0.0405 - - - - - - - - - -
3.9839 54200 0.0404 - - - - - - - - - -
3.9913 54300 0.0404 - - - - - - - - - -
3.9986 54400 0.0404 - - - - - - - - - -
4.0060 54500 0.0404 - - - - - - - - - -
4.0133 54600 0.0404 - - - - - - - - - -
4.0207 54700 0.0404 - - - - - - - - - -
4.0280 54800 0.0404 - - - - - - - - - -
4.0354 54900 0.0404 - - - - - - - - - -
4.0427 55000 0.0403 - - - - - - - - - -
4.0501 55100 0.0404 - - - - - - - - - -
4.0574 55200 0.0404 - - - - - - - - - -
4.0648 55300 0.0404 - - - - - - - - - -
4.0721 55400 0.0404 - - - - - - - - - -
4.0795 55500 0.0405 - - - - - - - - - -
4.0868 55600 0.0404 - - - - - - - - - -
4.0942 55700 0.0404 - - - - - - - - - -
4.1015 55800 0.0404 - - - - - - - - - -
4.1089 55900 0.0404 - - - - - - - - - -
4.1162 56000 0.0404 0.0393 0.0408 0.0408 -4.0708294 0.9839 -4.255319 0.9020 0.7847 -4.2634797 0.8880
4.1236 56100 0.0404 - - - - - - - - - -
4.1309 56200 0.0404 - - - - - - - - - -
4.1383 56300 0.0403 - - - - - - - - - -
4.1456 56400 0.0404 - - - - - - - - - -
4.1530 56500 0.0403 - - - - - - - - - -
4.1603 56600 0.0404 - - - - - - - - - -
4.1677 56700 0.0405 - - - - - - - - - -
4.1751 56800 0.0404 - - - - - - - - - -
4.1824 56900 0.0404 - - - - - - - - - -
4.1898 57000 0.0404 - - - - - - - - - -
4.1971 57100 0.0403 - - - - - - - - - -
4.2045 57200 0.0404 - - - - - - - - - -
4.2118 57300 0.0404 - - - - - - - - - -
4.2192 57400 0.0404 - - - - - - - - - -
4.2265 57500 0.0404 - - - - - - - - - -
4.2339 57600 0.0404 - - - - - - - - - -
4.2412 57700 0.0404 - - - - - - - - - -
4.2486 57800 0.0404 - - - - - - - - - -
4.2559 57900 0.0404 - - - - - - - - - -
4.2633 58000 0.0403 0.0392 0.0408 0.0408 -4.0691004 0.9829 -4.253834 0.9023 0.7827 -4.2621255 0.8880
4.2706 58100 0.0404 - - - - - - - - - -
4.2780 58200 0.0403 - - - - - - - - - -
4.2853 58300 0.0404 - - - - - - - - - -
4.2927 58400 0.0404 - - - - - - - - - -
4.3000 58500 0.0404 - - - - - - - - - -
4.3074 58600 0.0403 - - - - - - - - - -
4.3147 58700 0.0404 - - - - - - - - - -
4.3221 58800 0.0404 - - - - - - - - - -
4.3294 58900 0.0404 - - - - - - - - - -
4.3368 59000 0.0404 - - - - - - - - - -
4.3441 59100 0.0403 - - - - - - - - - -
4.3515 59200 0.0404 - - - - - - - - - -
4.3588 59300 0.0403 - - - - - - - - - -
4.3662 59400 0.0403 - - - - - - - - - -
4.3735 59500 0.0404 - - - - - - - - - -
4.3809 59600 0.0404 - - - - - - - - - -
4.3882 59700 0.0403 - - - - - - - - - -
4.3956 59800 0.0403 - - - - - - - - - -
4.4029 59900 0.0404 - - - - - - - - - -
4.4103 60000 0.0403 0.0392 0.0408 0.0408 -4.067449 0.9824 -4.252402 0.9026 0.7815 -4.260964 0.8878
4.4176 60100 0.0403 - - - - - - - - - -
4.4250 60200 0.0404 - - - - - - - - - -
4.4323 60300 0.0404 - - - - - - - - - -
4.4397 60400 0.0403 - - - - - - - - - -
4.4470 60500 0.0404 - - - - - - - - - -
4.4544 60600 0.0404 - - - - - - - - - -
4.4617 60700 0.0404 - - - - - - - - - -
4.4691 60800 0.0403 - - - - - - - - - -
4.4764 60900 0.0403 - - - - - - - - - -
4.4838 61000 0.0404 - - - - - - - - - -
4.4911 61100 0.0404 - - - - - - - - - -
4.4985 61200 0.0404 - - - - - - - - - -
4.5058 61300 0.0404 - - - - - - - - - -
4.5132 61400 0.0403 - - - - - - - - - -
4.5205 61500 0.0404 - - - - - - - - - -
4.5279 61600 0.0403 - - - - - - - - - -
4.5352 61700 0.0404 - - - - - - - - - -
4.5426 61800 0.0404 - - - - - - - - - -
4.5499 61900 0.0404 - - - - - - - - - -
4.5573 62000 0.0403 0.0392 0.0408 0.0408 -4.06687 0.9839 -4.2519274 0.9028 0.7839 -4.260144 0.8884
4.5646 62100 0.0403 - - - - - - - - - -
4.5720 62200 0.0404 - - - - - - - - - -
4.5793 62300 0.0403 - - - - - - - - - -
4.5867 62400 0.0404 - - - - - - - - - -
4.5940 62500 0.0404 - - - - - - - - - -
4.6014 62600 0.0404 - - - - - - - - - -
4.6087 62700 0.0404 - - - - - - - - - -
4.6161 62800 0.0404 - - - - - - - - - -
4.6234 62900 0.0404 - - - - - - - - - -
4.6308 63000 0.0404 - - - - - - - - - -
4.6381 63100 0.0404 - - - - - - - - - -
4.6455 63200 0.0404 - - - - - - - - - -
4.6528 63300 0.0404 - - - - - - - - - -
4.6602 63400 0.0404 - - - - - - - - - -
4.6675 63500 0.0404 - - - - - - - - - -
4.6749 63600 0.0404 - - - - - - - - - -
4.6822 63700 0.0403 - - - - - - - - - -
4.6896 63800 0.0404 - - - - - - - - - -
4.6969 63900 0.0403 - - - - - - - - - -
4.7043 64000 0.0403 0.0392 0.0408 0.0408 -4.0657706 0.9829 -4.251195 0.9026 0.7835 -4.2593575 0.8881
4.7116 64100 0.0403 - - - - - - - - - -
4.7190 64200 0.0404 - - - - - - - - - -
4.7263 64300 0.0404 - - - - - - - - - -
4.7337 64400 0.0404 - - - - - - - - - -
4.7410 64500 0.0404 - - - - - - - - - -
4.7484 64600 0.0403 - - - - - - - - - -
4.7557 64700 0.0403 - - - - - - - - - -
4.7631 64800 0.0404 - - - - - - - - - -
4.7704 64900 0.0403 - - - - - - - - - -
4.7778 65000 0.0403 - - - - - - - - - -
4.7851 65100 0.0404 - - - - - - - - - -
4.7925 65200 0.0403 - - - - - - - - - -
4.7998 65300 0.0403 - - - - - - - - - -
4.8072 65400 0.0404 - - - - - - - - - -
4.8145 65500 0.0404 - - - - - - - - - -
4.8219 65600 0.0404 - - - - - - - - - -
4.8292 65700 0.0403 - - - - - - - - - -
4.8366 65800 0.0404 - - - - - - - - - -
4.8439 65900 0.0404 - - - - - - - - - -
4.8513 66000 0.0404 0.0392 0.0408 0.0408 -4.0652847 0.9834 -4.2506175 0.9028 0.7839 -4.2587624 0.8887
4.8586 66100 0.0403 - - - - - - - - - -
4.8660 66200 0.0403 - - - - - - - - - -
4.8733 66300 0.0403 - - - - - - - - - -
4.8807 66400 0.0403 - - - - - - - - - -
4.8880 66500 0.0404 - - - - - - - - - -
4.8954 66600 0.0404 - - - - - - - - - -
4.9027 66700 0.0404 - - - - - - - - - -
4.9101 66800 0.0404 - - - - - - - - - -
4.9174 66900 0.0403 - - - - - - - - - -
4.9248 67000 0.0403 - - - - - - - - - -
4.9321 67100 0.0404 - - - - - - - - - -
4.9395 67200 0.0404 - - - - - - - - - -
4.9468 67300 0.0404 - - - - - - - - - -
4.9542 67400 0.0403 - - - - - - - - - -
4.9615 67500 0.0404 - - - - - - - - - -
4.9689 67600 0.0403 - - - - - - - - - -
4.9762 67700 0.0404 - - - - - - - - - -
4.9836 67800 0.0403 - - - - - - - - - -
4.9909 67900 0.0404 - - - - - - - - - -
4.9983 68000 0.0404 0.0392 0.0408 0.0408 -4.0641384 0.9834 -4.2498612 0.9028 0.7849 -4.258079 0.8888
5.0057 68100 0.0404 - - - - - - - - - -
5.0130 68200 0.0404 - - - - - - - - - -
5.0204 68300 0.0404 - - - - - - - - - -
5.0277 68400 0.0403 - - - - - - - - - -
5.0351 68500 0.0404 - - - - - - - - - -
5.0424 68600 0.0403 - - - - - - - - - -
5.0498 68700 0.0404 - - - - - - - - - -
5.0571 68800 0.0404 - - - - - - - - - -
5.0645 68900 0.0403 - - - - - - - - - -
5.0718 69000 0.0404 - - - - - - - - - -
5.0792 69100 0.0404 - - - - - - - - - -
5.0865 69200 0.0404 - - - - - - - - - -
5.0939 69300 0.0403 - - - - - - - - - -
5.1012 69400 0.0403 - - - - - - - - - -
5.1086 69500 0.0404 - - - - - - - - - -
5.1159 69600 0.0403 - - - - - - - - - -
5.1233 69700 0.0403 - - - - - - - - - -
5.1306 69800 0.0404 - - - - - - - - - -
5.1380 69900 0.0403 - - - - - - - - - -
5.1453 70000 0.0404 0.0392 0.0408 0.0408 -4.0635867 0.9829 -4.2490883 0.9027 0.7853 -4.2572694 0.8888
5.1527 70100 0.0403 - - - - - - - - - -
5.1600 70200 0.0403 - - - - - - - - - -
5.1674 70300 0.0404 - - - - - - - - - -
5.1747 70400 0.0404 - - - - - - - - - -
5.1821 70500 0.0404 - - - - - - - - - -
5.1894 70600 0.0403 - - - - - - - - - -
5.1968 70700 0.0403 - - - - - - - - - -
5.2041 70800 0.0403 - - - - - - - - - -
5.2115 70900 0.0403 - - - - - - - - - -
5.2188 71000 0.0404 - - - - - - - - - -
5.2262 71100 0.0403 - - - - - - - - - -
5.2335 71200 0.0403 - - - - - - - - - -
5.2409 71300 0.0403 - - - - - - - - - -
5.2482 71400 0.0404 - - - - - - - - - -
5.2556 71500 0.0403 - - - - - - - - - -
5.2629 71600 0.0403 - - - - - - - - - -
5.2703 71700 0.0404 - - - - - - - - - -
5.2776 71800 0.0403 - - - - - - - - - -
5.2850 71900 0.0404 - - - - - - - - - -
5.2923 72000 0.0403 0.0392 0.0408 0.0408 -4.0629997 0.9829 -4.248385 0.9029 0.7867 -4.256695 0.8886
5.2997 72100 0.0404 - - - - - - - - - -
5.3070 72200 0.0403 - - - - - - - - - -
5.3144 72300 0.0403 - - - - - - - - - -
5.3217 72400 0.0403 - - - - - - - - - -
5.3291 72500 0.0403 - - - - - - - - - -
5.3364 72600 0.0404 - - - - - - - - - -
5.3438 72700 0.0403 - - - - - - - - - -
5.3511 72800 0.0404 - - - - - - - - - -
5.3585 72900 0.0403 - - - - - - - - - -
5.3658 73000 0.0403 - - - - - - - - - -
5.3732 73100 0.0404 - - - - - - - - - -
5.3805 73200 0.0403 - - - - - - - - - -
5.3879 73300 0.0402 - - - - - - - - - -
5.3952 73400 0.0403 - - - - - - - - - -
5.4026 73500 0.0404 - - - - - - - - - -
5.4099 73600 0.0403 - - - - - - - - - -
5.4173 73700 0.0403 - - - - - - - - - -
5.4246 73800 0.0403 - - - - - - - - - -
5.4320 73900 0.0404 - - - - - - - - - -
5.4393 74000 0.0403 0.0392 0.0408 0.0408 -4.0628495 0.9834 -4.2482247 0.9030 0.7844 -4.256557 0.8888
5.4467 74100 0.0403 - - - - - - - - - -
5.4540 74200 0.0403 - - - - - - - - - -
5.4614 74300 0.0404 - - - - - - - - - -
5.4687 74400 0.0403 - - - - - - - - - -
5.4761 74500 0.0403 - - - - - - - - - -
5.4834 74600 0.0404 - - - - - - - - - -
5.4908 74700 0.0403 - - - - - - - - - -
5.4981 74800 0.0404 - - - - - - - - - -
5.5055 74900 0.0404 - - - - - - - - - -
5.5128 75000 0.0403 - - - - - - - - - -
5.5202 75100 0.0403 - - - - - - - - - -
5.5275 75200 0.0403 - - - - - - - - - -
5.5349 75300 0.0403 - - - - - - - - - -
5.5422 75400 0.0404 - - - - - - - - - -
5.5496 75500 0.0403 - - - - - - - - - -
5.5569 75600 0.0403 - - - - - - - - - -
5.5643 75700 0.0403 - - - - - - - - - -
5.5716 75800 0.0403 - - - - - - - - - -
5.5790 75900 0.0403 - - - - - - - - - -
5.5863 76000 0.0404 0.0392 0.0408 0.0408 -4.062086 0.9829 -4.247803 0.9032 0.7871 -4.2560315 0.8889
5.5937 76100 0.0404 - - - - - - - - - -
5.6010 76200 0.0403 - - - - - - - - - -
5.6084 76300 0.0404 - - - - - - - - - -
5.6157 76400 0.0403 - - - - - - - - - -
5.6231 76500 0.0404 - - - - - - - - - -
5.6304 76600 0.0404 - - - - - - - - - -
5.6378 76700 0.0403 - - - - - - - - - -
5.6451 76800 0.0403 - - - - - - - - - -
5.6525 76900 0.0403 - - - - - - - - - -
5.6598 77000 0.0404 - - - - - - - - - -
5.6672 77100 0.0403 - - - - - - - - - -
5.6745 77200 0.0403 - - - - - - - - - -
5.6819 77300 0.0403 - - - - - - - - - -
5.6892 77400 0.0404 - - - - - - - - - -
5.6966 77500 0.0403 - - - - - - - - - -
5.7039 77600 0.0403 - - - - - - - - - -
5.7113 77700 0.0403 - - - - - - - - - -
5.7186 77800 0.0403 - - - - - - - - - -
5.7260 77900 0.0403 - - - - - - - - - -
5.7333 78000 0.0404 0.0392 0.0408 0.0408 -4.062058 0.9834 -4.247644 0.9029 0.7858 -4.2557683 0.8888
5.7407 78100 0.0404 - - - - - - - - - -
5.7480 78200 0.0403 - - - - - - - - - -
5.7554 78300 0.0403 - - - - - - - - - -
5.7627 78400 0.0404 - - - - - - - - - -
5.7701 78500 0.0403 - - - - - - - - - -
5.7774 78600 0.0403 - - - - - - - - - -
5.7848 78700 0.0404 - - - - - - - - - -
5.7921 78800 0.0403 - - - - - - - - - -
5.7995 78900 0.0403 - - - - - - - - - -
5.8068 79000 0.0404 - - - - - - - - - -
5.8142 79100 0.0403 - - - - - - - - - -
5.8215 79200 0.0404 - - - - - - - - - -
5.8289 79300 0.0403 - - - - - - - - - -
5.8363 79400 0.0404 - - - - - - - - - -
5.8436 79500 0.0403 - - - - - - - - - -
5.8510 79600 0.0404 - - - - - - - - - -
5.8583 79700 0.0403 - - - - - - - - - -
5.8657 79800 0.0403 - - - - - - - - - -
5.8730 79900 0.0403 - - - - - - - - - -
5.8804 80000 0.0403 0.0392 0.0408 0.0408 -4.0617065 0.9834 -4.247319 0.9030 0.7862 -4.255536 0.8888
5.8877 80100 0.0404 - - - - - - - - - -
5.8951 80200 0.0404 - - - - - - - - - -
5.9024 80300 0.0403 - - - - - - - - - -
5.9098 80400 0.0404 - - - - - - - - - -
5.9171 80500 0.0403 - - - - - - - - - -
5.9245 80600 0.0403 - - - - - - - - - -
5.9318 80700 0.0404 - - - - - - - - - -
5.9392 80800 0.0403 - - - - - - - - - -
5.9465 80900 0.0404 - - - - - - - - - -
5.9539 81000 0.0403 - - - - - - - - - -
5.9612 81100 0.0403 - - - - - - - - - -
5.9686 81200 0.0403 - - - - - - - - - -
5.9759 81300 0.0404 - - - - - - - - - -
5.9833 81400 0.0403 - - - - - - - - - -
5.9906 81500 0.0403 - - - - - - - - - -
5.9980 81600 0.0403 - - - - - - - - - -

Framework Versions

  • Python: 3.12.7
  • Sentence Transformers: 3.3.0
  • Transformers: 4.46.2
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.1.1
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MSELoss

@inproceedings{reimers-2020-multilingual-sentence-bert,
    title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2020",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2004.09813",
}