一、 个人在openwebtext数据集上添加rotary-position-embedding,训练得到的electra-small模型

二、 复现结果(dev dataset)

Model CoLA SST MRPC STS QQP MNLI QNLI RTE Avg.
ELECTRA-Small-OWT(original) 56.8 88.3 87.4 86.8 88.3 78.9 87.9 68.5 80.36
ELECTRA-RoFormer-Small-OWT (this) 55.76 90.45 87.3 86.64 89.61 81.17 88.85 62.71 80.31

三、 训练细节

  • 数据集 openwebtext
  • 训练batch_size 256
  • 学习率lr 5e-4
  • 最大句子长度max_seqlen 128
  • 训练total step 50W
  • GPU RTX3090
  • 训练时间总共耗费55h

四、wandb日志

五、 使用

import torch
from transformers import ElectraTokenizer,RoFormerForMaskedLM

text = "Beijing is the capital of [MASK]."
tokenizer = ElectraTokenizer.from_pretrained("junnyu/roformer_small_generator")
pt_model = RoFormerForMaskedLM.from_pretrained(
    "junnyu/roformer_small_generator")
pt_inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
    pt_outputs = pt_model(**pt_inputs).logits[0]
pt_outputs_sentence = "pytorch: "
for i, id in enumerate(tokenizer.encode(text)):
    if id == tokenizer.mask_token_id:
        tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1])
        pt_outputs_sentence += "[" + "||".join(tokens) + "]"
    else:
        pt_outputs_sentence += "".join(
            tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True))+" "
print(pt_outputs_sentence)
# pytorch:  beijing is the capital of [china||beijing||taiwan||india||shanghai].  
Downloads last month
29
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train junnyu/roformer_small_generator