lora_eager_ko-gemma-2-9b-it_nqa-sft-dataset

This model is a fine-tuned version of rtzr/ko-gemma-2-9b-it on the generator dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 8
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Framework versions

  • PEFT 0.12.0
  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for juniorVision/lora_eager_ko-gemma-2-9b-it_nqa-sft-dataset

Base model

google/gemma-2-9b
Adapter
(11)
this model