metadata
base_model: medicalai/ClinicalBERT
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: ClinicalBERT_CRAFT_NER
results: []
ClinicalBERT_CRAFT_NER
This model is a fine-tuned version of medicalai/ClinicalBERT on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1735
- Precision: 0.7738
- Recall: 0.7536
- F1: 0.7636
- Accuracy: 0.9553
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 347 | 0.1980 | 0.7224 | 0.7239 | 0.7232 | 0.9457 |
0.2292 | 2.0 | 695 | 0.1771 | 0.7528 | 0.7545 | 0.7537 | 0.9530 |
0.0815 | 3.0 | 1041 | 0.1735 | 0.7738 | 0.7536 | 0.7636 | 0.9553 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0