vit-small_tobacco3482_og_simkd_

This model is a fine-tuned version of WinKawaks/vit-small-patch16-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 212.9178
  • Accuracy: 0.855
  • Brier Loss: 0.2563
  • Nll: 1.4722
  • F1 Micro: 0.855
  • F1 Macro: 0.8333
  • Ece: 0.1253
  • Aurc: 0.0422

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 1.0 25 219.2297 0.145 0.8895 6.5562 0.145 0.0567 0.2109 0.7661
No log 2.0 50 217.9786 0.49 0.6839 2.2035 0.49 0.4113 0.3237 0.3097
No log 3.0 75 216.6085 0.565 0.5671 1.7658 0.565 0.4471 0.2471 0.2239
No log 4.0 100 216.0210 0.68 0.4722 1.8682 0.68 0.5586 0.2322 0.1557
No log 5.0 125 215.5695 0.68 0.4668 1.9385 0.68 0.5570 0.2289 0.1440
No log 6.0 150 215.3762 0.745 0.3963 2.1043 0.745 0.6608 0.1949 0.0976
No log 7.0 175 214.8964 0.745 0.3675 1.7226 0.745 0.6693 0.1765 0.0949
No log 8.0 200 215.0440 0.735 0.3838 1.9180 0.735 0.6935 0.2056 0.0958
No log 9.0 225 214.7017 0.775 0.3466 1.5816 0.775 0.6897 0.1756 0.0661
No log 10.0 250 214.6309 0.775 0.3505 1.6245 0.775 0.7604 0.1828 0.0763
No log 11.0 275 214.6275 0.735 0.4314 2.3367 0.735 0.7342 0.2234 0.1203
No log 12.0 300 214.5664 0.75 0.3769 1.7889 0.75 0.7420 0.1873 0.1070
No log 13.0 325 214.6764 0.735 0.4425 2.3533 0.735 0.7404 0.2267 0.1508
No log 14.0 350 214.5261 0.805 0.3093 1.8504 0.805 0.7870 0.1732 0.0580
No log 15.0 375 214.4932 0.79 0.3255 1.4649 0.79 0.7575 0.1796 0.0543
No log 16.0 400 214.3134 0.85 0.2467 1.4769 0.85 0.8388 0.1149 0.0513
No log 17.0 425 214.3825 0.82 0.2845 1.4858 0.82 0.8014 0.1445 0.0540
No log 18.0 450 214.2077 0.85 0.2681 1.4891 0.85 0.8406 0.1462 0.0684
No log 19.0 475 214.1675 0.845 0.2623 1.5311 0.845 0.8329 0.1414 0.0485
220.0633 20.0 500 214.1433 0.84 0.2663 1.5269 0.8400 0.8182 0.1302 0.0562
220.0633 21.0 525 214.0829 0.805 0.3293 2.0021 0.805 0.8019 0.1710 0.0833
220.0633 22.0 550 213.9282 0.84 0.2586 1.5127 0.8400 0.8205 0.1397 0.0453
220.0633 23.0 575 213.9303 0.87 0.2260 1.4450 0.87 0.8552 0.1205 0.0365
220.0633 24.0 600 213.9140 0.84 0.2620 1.5244 0.8400 0.8161 0.1462 0.0490
220.0633 25.0 625 213.7616 0.86 0.2306 1.5288 0.8600 0.8409 0.1215 0.0361
220.0633 26.0 650 213.7738 0.845 0.2431 1.5303 0.845 0.8271 0.1335 0.0443
220.0633 27.0 675 213.8470 0.85 0.2427 1.3459 0.85 0.8275 0.1296 0.0445
220.0633 28.0 700 213.7198 0.85 0.2381 1.3868 0.85 0.8328 0.1267 0.0424
220.0633 29.0 725 213.6302 0.855 0.2293 1.4191 0.855 0.8361 0.1157 0.0394
220.0633 30.0 750 213.6385 0.85 0.2424 1.5410 0.85 0.8334 0.1339 0.0464
220.0633 31.0 775 213.6397 0.865 0.2234 1.4012 0.865 0.8464 0.1226 0.0402
220.0633 32.0 800 213.6658 0.86 0.2271 1.3863 0.8600 0.8470 0.1164 0.0354
220.0633 33.0 825 213.6526 0.85 0.2448 1.5357 0.85 0.8292 0.1214 0.0397
220.0633 34.0 850 213.5407 0.855 0.2282 1.3470 0.855 0.8405 0.1245 0.0393
220.0633 35.0 875 213.6166 0.83 0.2624 1.4288 0.83 0.8102 0.1415 0.0458
220.0633 36.0 900 213.5887 0.84 0.2613 1.3928 0.8400 0.8135 0.1298 0.0442
220.0633 37.0 925 213.4976 0.845 0.2338 1.3784 0.845 0.8244 0.1319 0.0355
220.0633 38.0 950 213.4554 0.85 0.2374 1.3680 0.85 0.8323 0.1192 0.0385
220.0633 39.0 975 213.4758 0.845 0.2319 1.4895 0.845 0.8274 0.1185 0.0385
217.7609 40.0 1000 213.4440 0.845 0.2432 1.3737 0.845 0.8265 0.1310 0.0415
217.7609 41.0 1025 213.4492 0.845 0.2385 1.4970 0.845 0.8297 0.1207 0.0373
217.7609 42.0 1050 213.4319 0.85 0.2384 1.3580 0.85 0.8276 0.1250 0.0383
217.7609 43.0 1075 213.3094 0.855 0.2287 1.4375 0.855 0.8334 0.1188 0.0353
217.7609 44.0 1100 213.3809 0.845 0.2514 1.4969 0.845 0.8250 0.1318 0.0435
217.7609 45.0 1125 213.3981 0.85 0.2478 1.6052 0.85 0.8287 0.1268 0.0408
217.7609 46.0 1150 213.3004 0.86 0.2292 1.3632 0.8600 0.8430 0.1180 0.0355
217.7609 47.0 1175 213.3041 0.86 0.2363 1.3407 0.8600 0.8444 0.1235 0.0359
217.7609 48.0 1200 213.2955 0.845 0.2462 1.5071 0.845 0.8179 0.1253 0.0396
217.7609 49.0 1225 213.2531 0.85 0.2433 1.2946 0.85 0.8277 0.1270 0.0392
217.7609 50.0 1250 213.2612 0.845 0.2378 1.2852 0.845 0.8193 0.1281 0.0361
217.7609 51.0 1275 213.2246 0.855 0.2370 1.5829 0.855 0.8393 0.1234 0.0357
217.7609 52.0 1300 213.1795 0.845 0.2431 1.4923 0.845 0.8300 0.1280 0.0372
217.7609 53.0 1325 213.2721 0.855 0.2467 1.5096 0.855 0.8333 0.1248 0.0385
217.7609 54.0 1350 213.1976 0.85 0.2453 1.4167 0.85 0.8275 0.1240 0.0384
217.7609 55.0 1375 213.2822 0.845 0.2430 1.4438 0.845 0.8193 0.1283 0.0396
217.7609 56.0 1400 213.1443 0.85 0.2479 1.5246 0.85 0.8277 0.1304 0.0389
217.7609 57.0 1425 213.1679 0.85 0.2455 1.4468 0.85 0.8291 0.1224 0.0387
217.7609 58.0 1450 213.1116 0.85 0.2467 1.4372 0.85 0.8287 0.1269 0.0378
217.7609 59.0 1475 213.1005 0.85 0.2490 1.4214 0.85 0.8271 0.1316 0.0392
217.1217 60.0 1500 213.1516 0.855 0.2425 1.4600 0.855 0.8343 0.1316 0.0369
217.1217 61.0 1525 213.1205 0.855 0.2458 1.4436 0.855 0.8303 0.1197 0.0409
217.1217 62.0 1550 213.1318 0.85 0.2488 1.4405 0.85 0.8275 0.1304 0.0378
217.1217 63.0 1575 213.0243 0.855 0.2521 1.5810 0.855 0.8328 0.1341 0.0447
217.1217 64.0 1600 213.1191 0.84 0.2567 1.4478 0.8400 0.8185 0.1292 0.0436
217.1217 65.0 1625 213.0329 0.855 0.2528 1.3910 0.855 0.8333 0.1311 0.0404
217.1217 66.0 1650 212.9868 0.85 0.2525 1.4652 0.85 0.8275 0.1226 0.0408
217.1217 67.0 1675 213.0856 0.84 0.2561 1.4601 0.8400 0.8178 0.1367 0.0419
217.1217 68.0 1700 213.0379 0.845 0.2544 1.5222 0.845 0.8216 0.1362 0.0426
217.1217 69.0 1725 213.0535 0.835 0.2606 1.5085 0.835 0.8093 0.1346 0.0445
217.1217 70.0 1750 213.0247 0.85 0.2530 1.4349 0.85 0.8274 0.1373 0.0427
217.1217 71.0 1775 213.0161 0.855 0.2510 1.4529 0.855 0.8333 0.1212 0.0411
217.1217 72.0 1800 213.0249 0.845 0.2494 1.4511 0.845 0.8229 0.1358 0.0412
217.1217 73.0 1825 213.0014 0.85 0.2548 1.4435 0.85 0.8264 0.1277 0.0390
217.1217 74.0 1850 213.0011 0.845 0.2527 1.3719 0.845 0.8206 0.1360 0.0379
217.1217 75.0 1875 213.0240 0.845 0.2576 1.4072 0.845 0.8221 0.1284 0.0425
217.1217 76.0 1900 212.9793 0.845 0.2534 1.4026 0.845 0.8212 0.1241 0.0404
217.1217 77.0 1925 212.9800 0.85 0.2514 1.5023 0.85 0.8271 0.1279 0.0407
217.1217 78.0 1950 212.9125 0.845 0.2564 1.4258 0.845 0.8211 0.1298 0.0427
217.1217 79.0 1975 212.9454 0.85 0.2527 1.5227 0.85 0.8271 0.1279 0.0423
216.765 80.0 2000 212.9475 0.845 0.2551 1.5025 0.845 0.8206 0.1311 0.0423
216.765 81.0 2025 212.9739 0.84 0.2567 1.5305 0.8400 0.8162 0.1294 0.0431
216.765 82.0 2050 212.9351 0.855 0.2526 1.5373 0.855 0.8339 0.1277 0.0401
216.765 83.0 2075 213.0053 0.845 0.2560 1.4724 0.845 0.8228 0.1341 0.0417
216.765 84.0 2100 212.9326 0.845 0.2568 1.5217 0.845 0.8206 0.1303 0.0472
216.765 85.0 2125 212.9555 0.855 0.2537 1.5265 0.855 0.8339 0.1233 0.0416
216.765 86.0 2150 212.9121 0.85 0.2534 1.5224 0.85 0.8280 0.1283 0.0398
216.765 87.0 2175 212.8850 0.845 0.2551 1.4480 0.845 0.8221 0.1328 0.0412
216.765 88.0 2200 212.9121 0.855 0.2518 1.5069 0.855 0.8339 0.1234 0.0404
216.765 89.0 2225 212.9327 0.845 0.2517 1.4532 0.845 0.8206 0.1231 0.0401
216.765 90.0 2250 212.9305 0.85 0.2542 1.4506 0.85 0.8271 0.1374 0.0398
216.765 91.0 2275 212.9274 0.85 0.2567 1.5045 0.85 0.8280 0.1297 0.0419
216.765 92.0 2300 212.8962 0.85 0.2545 1.4956 0.85 0.8280 0.1261 0.0405
216.765 93.0 2325 212.9133 0.845 0.2567 1.5274 0.845 0.8212 0.1291 0.0431
216.765 94.0 2350 212.8708 0.85 0.2576 1.4410 0.85 0.8280 0.1302 0.0410
216.765 95.0 2375 212.9661 0.855 0.2546 1.3988 0.855 0.8339 0.1248 0.0404
216.765 96.0 2400 212.9099 0.855 0.2547 1.5096 0.855 0.8333 0.1256 0.0402
216.765 97.0 2425 212.9668 0.85 0.2549 1.5337 0.85 0.8271 0.1289 0.0390
216.765 98.0 2450 212.9587 0.845 0.2545 1.5161 0.845 0.8215 0.1304 0.0412
216.765 99.0 2475 212.9395 0.855 0.2554 1.4606 0.855 0.8333 0.1253 0.0410
216.6085 100.0 2500 212.9178 0.855 0.2563 1.4722 0.855 0.8333 0.1253 0.0422

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1.post200
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.