81-tiny_tobacco3482_kd_NKD_t1.0_g1.5
This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 4.0317
- Accuracy: 0.86
- Brier Loss: 0.2316
- Nll: 0.9681
- F1 Micro: 0.8600
- F1 Macro: 0.8444
- Ece: 0.1162
- Aurc: 0.0505
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 7 | 6.0999 | 0.095 | 1.0191 | 8.7249 | 0.095 | 0.0767 | 0.3174 | 0.8988 |
No log | 2.0 | 14 | 5.0037 | 0.145 | 0.9023 | 8.1615 | 0.145 | 0.1212 | 0.2431 | 0.8041 |
No log | 3.0 | 21 | 4.5740 | 0.265 | 0.8363 | 5.9714 | 0.265 | 0.2003 | 0.2732 | 0.5711 |
No log | 4.0 | 28 | 4.3460 | 0.435 | 0.7292 | 3.9720 | 0.435 | 0.3780 | 0.3029 | 0.3535 |
No log | 5.0 | 35 | 4.1953 | 0.565 | 0.6344 | 2.7772 | 0.565 | 0.4465 | 0.3056 | 0.2433 |
No log | 6.0 | 42 | 4.0769 | 0.665 | 0.5852 | 2.3975 | 0.665 | 0.5345 | 0.3469 | 0.1662 |
No log | 7.0 | 49 | 3.9670 | 0.685 | 0.5103 | 2.1879 | 0.685 | 0.5645 | 0.3335 | 0.1339 |
No log | 8.0 | 56 | 3.9085 | 0.74 | 0.4625 | 1.7988 | 0.74 | 0.6444 | 0.3276 | 0.1028 |
No log | 9.0 | 63 | 3.8671 | 0.765 | 0.4073 | 1.5650 | 0.765 | 0.6567 | 0.2800 | 0.0878 |
No log | 10.0 | 70 | 3.8008 | 0.77 | 0.3617 | 1.4468 | 0.7700 | 0.6730 | 0.2443 | 0.0692 |
No log | 11.0 | 77 | 3.8924 | 0.76 | 0.3685 | 1.4401 | 0.76 | 0.7045 | 0.2129 | 0.0859 |
No log | 12.0 | 84 | 3.8523 | 0.78 | 0.3275 | 1.3333 | 0.78 | 0.7165 | 0.2191 | 0.0691 |
No log | 13.0 | 91 | 3.7745 | 0.78 | 0.3229 | 1.4554 | 0.78 | 0.6820 | 0.1980 | 0.0653 |
No log | 14.0 | 98 | 3.8155 | 0.805 | 0.3070 | 1.1638 | 0.805 | 0.7564 | 0.1993 | 0.0621 |
No log | 15.0 | 105 | 3.8060 | 0.815 | 0.3038 | 1.2009 | 0.815 | 0.7624 | 0.2051 | 0.0607 |
No log | 16.0 | 112 | 3.8269 | 0.81 | 0.3044 | 1.2937 | 0.81 | 0.7751 | 0.1978 | 0.0643 |
No log | 17.0 | 119 | 3.8191 | 0.83 | 0.2841 | 0.9571 | 0.83 | 0.7978 | 0.1773 | 0.0593 |
No log | 18.0 | 126 | 3.8986 | 0.81 | 0.3109 | 1.1933 | 0.81 | 0.7858 | 0.1728 | 0.0692 |
No log | 19.0 | 133 | 3.8134 | 0.845 | 0.2694 | 0.9314 | 0.845 | 0.8175 | 0.1791 | 0.0549 |
No log | 20.0 | 140 | 3.8148 | 0.825 | 0.2768 | 0.8896 | 0.825 | 0.8108 | 0.1495 | 0.0619 |
No log | 21.0 | 147 | 3.7769 | 0.83 | 0.2639 | 0.9579 | 0.83 | 0.8064 | 0.1521 | 0.0521 |
No log | 22.0 | 154 | 3.7941 | 0.84 | 0.2596 | 0.9457 | 0.8400 | 0.8176 | 0.1644 | 0.0534 |
No log | 23.0 | 161 | 3.9296 | 0.79 | 0.2938 | 1.0757 | 0.79 | 0.7732 | 0.1612 | 0.0706 |
No log | 24.0 | 168 | 3.7899 | 0.815 | 0.2734 | 1.0937 | 0.815 | 0.7910 | 0.1570 | 0.0531 |
No log | 25.0 | 175 | 3.8261 | 0.855 | 0.2554 | 0.9640 | 0.855 | 0.8370 | 0.1378 | 0.0559 |
No log | 26.0 | 182 | 3.8596 | 0.805 | 0.2626 | 1.0429 | 0.805 | 0.7814 | 0.1548 | 0.0597 |
No log | 27.0 | 189 | 3.7974 | 0.825 | 0.2637 | 1.0256 | 0.825 | 0.8107 | 0.1251 | 0.0522 |
No log | 28.0 | 196 | 3.8304 | 0.83 | 0.2555 | 1.1640 | 0.83 | 0.8081 | 0.1337 | 0.0561 |
No log | 29.0 | 203 | 3.8346 | 0.835 | 0.2631 | 0.8774 | 0.835 | 0.8110 | 0.1473 | 0.0564 |
No log | 30.0 | 210 | 3.8251 | 0.825 | 0.2549 | 0.9254 | 0.825 | 0.7979 | 0.1298 | 0.0541 |
No log | 31.0 | 217 | 3.8759 | 0.825 | 0.2671 | 0.9357 | 0.825 | 0.8014 | 0.1672 | 0.0609 |
No log | 32.0 | 224 | 3.8466 | 0.835 | 0.2567 | 1.0822 | 0.835 | 0.8168 | 0.1454 | 0.0553 |
No log | 33.0 | 231 | 3.8600 | 0.835 | 0.2578 | 1.0196 | 0.835 | 0.8103 | 0.1363 | 0.0577 |
No log | 34.0 | 238 | 3.8364 | 0.84 | 0.2615 | 0.9060 | 0.8400 | 0.8153 | 0.1556 | 0.0550 |
No log | 35.0 | 245 | 3.8615 | 0.84 | 0.2741 | 0.9777 | 0.8400 | 0.8175 | 0.1553 | 0.0609 |
No log | 36.0 | 252 | 3.8354 | 0.815 | 0.2672 | 1.0578 | 0.815 | 0.7829 | 0.1412 | 0.0571 |
No log | 37.0 | 259 | 3.8214 | 0.825 | 0.2586 | 1.1244 | 0.825 | 0.8005 | 0.1567 | 0.0555 |
No log | 38.0 | 266 | 3.8379 | 0.84 | 0.2557 | 0.9827 | 0.8400 | 0.8159 | 0.1623 | 0.0569 |
No log | 39.0 | 273 | 3.8269 | 0.82 | 0.2590 | 1.0025 | 0.82 | 0.7983 | 0.1300 | 0.0552 |
No log | 40.0 | 280 | 3.8326 | 0.835 | 0.2576 | 0.9914 | 0.835 | 0.8145 | 0.1339 | 0.0549 |
No log | 41.0 | 287 | 3.8171 | 0.845 | 0.2446 | 0.9369 | 0.845 | 0.8234 | 0.1345 | 0.0555 |
No log | 42.0 | 294 | 3.8197 | 0.835 | 0.2421 | 0.9189 | 0.835 | 0.8127 | 0.1263 | 0.0551 |
No log | 43.0 | 301 | 3.8182 | 0.835 | 0.2421 | 1.0651 | 0.835 | 0.8181 | 0.1348 | 0.0528 |
No log | 44.0 | 308 | 3.8461 | 0.85 | 0.2482 | 0.9057 | 0.85 | 0.8353 | 0.1580 | 0.0530 |
No log | 45.0 | 315 | 3.8203 | 0.845 | 0.2405 | 0.8504 | 0.845 | 0.8241 | 0.1461 | 0.0512 |
No log | 46.0 | 322 | 3.8468 | 0.845 | 0.2431 | 0.7909 | 0.845 | 0.8252 | 0.1273 | 0.0534 |
No log | 47.0 | 329 | 3.8798 | 0.84 | 0.2486 | 0.9810 | 0.8400 | 0.8219 | 0.1412 | 0.0565 |
No log | 48.0 | 336 | 3.8650 | 0.855 | 0.2447 | 0.9117 | 0.855 | 0.8372 | 0.1465 | 0.0525 |
No log | 49.0 | 343 | 3.8425 | 0.845 | 0.2414 | 1.0040 | 0.845 | 0.8231 | 0.1251 | 0.0536 |
No log | 50.0 | 350 | 3.8350 | 0.86 | 0.2351 | 0.8541 | 0.8600 | 0.8454 | 0.1403 | 0.0511 |
No log | 51.0 | 357 | 3.8572 | 0.84 | 0.2427 | 0.9366 | 0.8400 | 0.8197 | 0.1249 | 0.0527 |
No log | 52.0 | 364 | 3.8461 | 0.85 | 0.2374 | 0.8631 | 0.85 | 0.8352 | 0.1269 | 0.0506 |
No log | 53.0 | 371 | 3.8692 | 0.835 | 0.2431 | 0.9839 | 0.835 | 0.8110 | 0.1356 | 0.0546 |
No log | 54.0 | 378 | 3.8806 | 0.855 | 0.2403 | 1.0493 | 0.855 | 0.8343 | 0.1287 | 0.0530 |
No log | 55.0 | 385 | 3.8875 | 0.86 | 0.2389 | 0.9404 | 0.8600 | 0.8435 | 0.1416 | 0.0532 |
No log | 56.0 | 392 | 3.8893 | 0.84 | 0.2407 | 0.9410 | 0.8400 | 0.8189 | 0.1256 | 0.0539 |
No log | 57.0 | 399 | 3.8923 | 0.84 | 0.2408 | 0.9917 | 0.8400 | 0.8176 | 0.1274 | 0.0540 |
No log | 58.0 | 406 | 3.8865 | 0.86 | 0.2323 | 0.9745 | 0.8600 | 0.8444 | 0.1372 | 0.0517 |
No log | 59.0 | 413 | 3.9037 | 0.845 | 0.2363 | 0.9451 | 0.845 | 0.8230 | 0.1422 | 0.0533 |
No log | 60.0 | 420 | 3.9040 | 0.845 | 0.2396 | 1.0699 | 0.845 | 0.8233 | 0.1272 | 0.0522 |
No log | 61.0 | 427 | 3.9136 | 0.85 | 0.2378 | 1.0664 | 0.85 | 0.8289 | 0.1283 | 0.0527 |
No log | 62.0 | 434 | 3.8877 | 0.85 | 0.2355 | 0.8483 | 0.85 | 0.8315 | 0.1445 | 0.0519 |
No log | 63.0 | 441 | 3.8991 | 0.855 | 0.2342 | 0.9246 | 0.855 | 0.8374 | 0.1124 | 0.0509 |
No log | 64.0 | 448 | 3.9207 | 0.85 | 0.2383 | 1.0477 | 0.85 | 0.8330 | 0.1235 | 0.0514 |
No log | 65.0 | 455 | 3.9000 | 0.855 | 0.2362 | 1.0504 | 0.855 | 0.8384 | 0.1375 | 0.0529 |
No log | 66.0 | 462 | 3.9542 | 0.84 | 0.2463 | 0.9763 | 0.8400 | 0.8255 | 0.1405 | 0.0540 |
No log | 67.0 | 469 | 3.9153 | 0.855 | 0.2374 | 0.9954 | 0.855 | 0.8376 | 0.1353 | 0.0523 |
No log | 68.0 | 476 | 3.9264 | 0.845 | 0.2410 | 0.9917 | 0.845 | 0.8295 | 0.1081 | 0.0515 |
No log | 69.0 | 483 | 3.8989 | 0.86 | 0.2272 | 0.9322 | 0.8600 | 0.8438 | 0.1260 | 0.0492 |
No log | 70.0 | 490 | 3.9224 | 0.86 | 0.2329 | 0.9317 | 0.8600 | 0.8443 | 0.1091 | 0.0515 |
No log | 71.0 | 497 | 3.9313 | 0.85 | 0.2360 | 1.0424 | 0.85 | 0.8310 | 0.1259 | 0.0511 |
3.5118 | 72.0 | 504 | 3.9407 | 0.85 | 0.2343 | 0.9333 | 0.85 | 0.8331 | 0.1156 | 0.0529 |
3.5118 | 73.0 | 511 | 3.9407 | 0.865 | 0.2318 | 0.9791 | 0.865 | 0.8523 | 0.1245 | 0.0497 |
3.5118 | 74.0 | 518 | 3.9461 | 0.855 | 0.2347 | 1.0488 | 0.855 | 0.8385 | 0.1298 | 0.0508 |
3.5118 | 75.0 | 525 | 3.9560 | 0.86 | 0.2319 | 0.9924 | 0.8600 | 0.8444 | 0.1410 | 0.0504 |
3.5118 | 76.0 | 532 | 3.9608 | 0.855 | 0.2317 | 0.9253 | 0.855 | 0.8390 | 0.1380 | 0.0517 |
3.5118 | 77.0 | 539 | 3.9638 | 0.865 | 0.2319 | 0.9210 | 0.865 | 0.8528 | 0.1202 | 0.0504 |
3.5118 | 78.0 | 546 | 3.9718 | 0.86 | 0.2323 | 0.9413 | 0.8600 | 0.8444 | 0.1255 | 0.0505 |
3.5118 | 79.0 | 553 | 3.9778 | 0.86 | 0.2324 | 0.9916 | 0.8600 | 0.8444 | 0.1270 | 0.0506 |
3.5118 | 80.0 | 560 | 3.9813 | 0.855 | 0.2323 | 0.9919 | 0.855 | 0.8390 | 0.1246 | 0.0509 |
3.5118 | 81.0 | 567 | 3.9876 | 0.86 | 0.2319 | 0.9330 | 0.8600 | 0.8444 | 0.1318 | 0.0506 |
3.5118 | 82.0 | 574 | 3.9939 | 0.855 | 0.2324 | 0.9328 | 0.855 | 0.8390 | 0.1280 | 0.0510 |
3.5118 | 83.0 | 581 | 3.9971 | 0.86 | 0.2319 | 0.9321 | 0.8600 | 0.8444 | 0.1303 | 0.0503 |
3.5118 | 84.0 | 588 | 4.0003 | 0.855 | 0.2316 | 0.9348 | 0.855 | 0.8390 | 0.1284 | 0.0508 |
3.5118 | 85.0 | 595 | 4.0054 | 0.86 | 0.2319 | 0.9909 | 0.8600 | 0.8444 | 0.1348 | 0.0503 |
3.5118 | 86.0 | 602 | 4.0086 | 0.86 | 0.2315 | 0.9338 | 0.8600 | 0.8444 | 0.1340 | 0.0504 |
3.5118 | 87.0 | 609 | 4.0125 | 0.86 | 0.2318 | 0.9522 | 0.8600 | 0.8444 | 0.1348 | 0.0504 |
3.5118 | 88.0 | 616 | 4.0148 | 0.86 | 0.2316 | 0.9396 | 0.8600 | 0.8444 | 0.1323 | 0.0504 |
3.5118 | 89.0 | 623 | 4.0185 | 0.86 | 0.2318 | 0.9378 | 0.8600 | 0.8444 | 0.1326 | 0.0505 |
3.5118 | 90.0 | 630 | 4.0197 | 0.86 | 0.2316 | 0.9412 | 0.8600 | 0.8444 | 0.1253 | 0.0506 |
3.5118 | 91.0 | 637 | 4.0231 | 0.86 | 0.2318 | 0.9395 | 0.8600 | 0.8444 | 0.1165 | 0.0506 |
3.5118 | 92.0 | 644 | 4.0249 | 0.86 | 0.2316 | 0.9921 | 0.8600 | 0.8444 | 0.1159 | 0.0504 |
3.5118 | 93.0 | 651 | 4.0266 | 0.86 | 0.2316 | 0.9441 | 0.8600 | 0.8444 | 0.1161 | 0.0505 |
3.5118 | 94.0 | 658 | 4.0275 | 0.86 | 0.2317 | 0.9934 | 0.8600 | 0.8444 | 0.1159 | 0.0504 |
3.5118 | 95.0 | 665 | 4.0289 | 0.86 | 0.2315 | 0.9429 | 0.8600 | 0.8444 | 0.1160 | 0.0505 |
3.5118 | 96.0 | 672 | 4.0301 | 0.86 | 0.2316 | 0.9932 | 0.8600 | 0.8444 | 0.1163 | 0.0505 |
3.5118 | 97.0 | 679 | 4.0304 | 0.86 | 0.2315 | 0.9936 | 0.8600 | 0.8444 | 0.1163 | 0.0505 |
3.5118 | 98.0 | 686 | 4.0313 | 0.86 | 0.2316 | 0.9935 | 0.8600 | 0.8444 | 0.1163 | 0.0504 |
3.5118 | 99.0 | 693 | 4.0317 | 0.86 | 0.2316 | 0.9601 | 0.8600 | 0.8444 | 0.1162 | 0.0505 |
3.5118 | 100.0 | 700 | 4.0317 | 0.86 | 0.2316 | 0.9681 | 0.8600 | 0.8444 | 0.1162 | 0.0505 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 163
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.