jordan2889's picture
jordan2889/classify-phishing_real_1
27e84d6 verified
metadata
license: apache-2.0
base_model: albert/albert-base-v2
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: classify-phishing_real_1
    results: []

classify-phishing_real_1

This model is a fine-tuned version of albert/albert-base-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1185
  • Accuracy: 0.9645
  • F1: 0.9645
  • Precision: 0.9645
  • Recall: 0.9645
  • Accuracy Label 0: 0.9708
  • Accuracy Label 1: 0.9559

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Accuracy Label 0 Accuracy Label 1
0.4991 0.1030 100 0.4748 0.7925 0.7819 0.8136 0.7925 0.9508 0.5747
0.3087 0.2060 200 0.3052 0.8799 0.8793 0.8799 0.8799 0.9189 0.8262
0.2974 0.3090 300 0.2390 0.9093 0.9094 0.9095 0.9093 0.9181 0.8972
0.2644 0.4119 400 0.3068 0.8663 0.8670 0.8887 0.8663 0.7899 0.9715
0.223 0.5149 500 0.2122 0.9154 0.9158 0.9195 0.9154 0.8905 0.9495
0.215 0.6179 600 0.2011 0.9229 0.9222 0.9252 0.9229 0.9714 0.8561
0.1419 0.7209 700 0.1836 0.9305 0.9300 0.9318 0.9305 0.9690 0.8775
0.1511 0.8239 800 0.1828 0.9305 0.9308 0.9327 0.9305 0.9145 0.9526
0.173 0.9269 900 0.1544 0.9430 0.9428 0.9433 0.9430 0.9666 0.9107
0.0986 1.0299 1000 0.1513 0.9429 0.9430 0.9435 0.9429 0.9384 0.9491
0.1403 1.1329 1100 0.1515 0.9426 0.9429 0.9444 0.9426 0.9278 0.9631
0.1133 1.2358 1200 0.1394 0.9475 0.9475 0.9475 0.9475 0.9531 0.9397
0.1117 1.3388 1300 0.1525 0.9457 0.9459 0.9467 0.9457 0.9371 0.9576
0.1277 1.4418 1400 0.1311 0.9490 0.9491 0.9492 0.9490 0.9501 0.9475
0.0886 1.5448 1500 0.1375 0.9503 0.9503 0.9503 0.9503 0.9628 0.9331
0.1273 1.6478 1600 0.1297 0.9533 0.9533 0.9535 0.9533 0.9536 0.9529
0.1102 1.7508 1700 0.1136 0.9578 0.9578 0.9578 0.9578 0.9637 0.9498
0.0793 1.8538 1800 0.1269 0.9562 0.9561 0.9563 0.9562 0.9718 0.9348
0.0995 1.9567 1900 0.1129 0.9591 0.9590 0.9591 0.9591 0.9702 0.9437
0.0846 2.0597 2000 0.1362 0.9533 0.9534 0.9543 0.9533 0.9422 0.9685
0.096 2.1627 2100 0.1383 0.9563 0.9564 0.9572 0.9563 0.9467 0.9696
0.0797 2.2657 2200 0.1137 0.9620 0.9619 0.9619 0.9620 0.9711 0.9494
0.0602 2.3687 2300 0.1211 0.9609 0.9609 0.9609 0.9609 0.9664 0.9532
0.0951 2.4717 2400 0.1194 0.9614 0.9615 0.9615 0.9614 0.9628 0.9596
0.0343 2.5747 2500 0.1237 0.9629 0.9629 0.9630 0.9629 0.9624 0.9634
0.0512 2.6777 2600 0.1263 0.9625 0.9625 0.9625 0.9625 0.9738 0.9471
0.0532 2.7806 2700 0.1229 0.9633 0.9633 0.9633 0.9633 0.9706 0.9533
0.0673 2.8836 2800 0.1206 0.9644 0.9644 0.9644 0.9644 0.9679 0.9596
0.0209 2.9866 2900 0.1185 0.9645 0.9645 0.9645 0.9645 0.9709 0.9556

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.2.1
  • Datasets 2.20.0
  • Tokenizers 0.19.1