metadata
license: apache-2.0
base_model: albert/albert-base-v2
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: classify-phishing_real_1
results: []
classify-phishing_real_1
This model is a fine-tuned version of albert/albert-base-v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1185
- Accuracy: 0.9645
- F1: 0.9645
- Precision: 0.9645
- Recall: 0.9645
- Accuracy Label 0: 0.9708
- Accuracy Label 1: 0.9559
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Accuracy Label 0 | Accuracy Label 1 |
---|---|---|---|---|---|---|---|---|---|
0.4991 | 0.1030 | 100 | 0.4748 | 0.7925 | 0.7819 | 0.8136 | 0.7925 | 0.9508 | 0.5747 |
0.3087 | 0.2060 | 200 | 0.3052 | 0.8799 | 0.8793 | 0.8799 | 0.8799 | 0.9189 | 0.8262 |
0.2974 | 0.3090 | 300 | 0.2390 | 0.9093 | 0.9094 | 0.9095 | 0.9093 | 0.9181 | 0.8972 |
0.2644 | 0.4119 | 400 | 0.3068 | 0.8663 | 0.8670 | 0.8887 | 0.8663 | 0.7899 | 0.9715 |
0.223 | 0.5149 | 500 | 0.2122 | 0.9154 | 0.9158 | 0.9195 | 0.9154 | 0.8905 | 0.9495 |
0.215 | 0.6179 | 600 | 0.2011 | 0.9229 | 0.9222 | 0.9252 | 0.9229 | 0.9714 | 0.8561 |
0.1419 | 0.7209 | 700 | 0.1836 | 0.9305 | 0.9300 | 0.9318 | 0.9305 | 0.9690 | 0.8775 |
0.1511 | 0.8239 | 800 | 0.1828 | 0.9305 | 0.9308 | 0.9327 | 0.9305 | 0.9145 | 0.9526 |
0.173 | 0.9269 | 900 | 0.1544 | 0.9430 | 0.9428 | 0.9433 | 0.9430 | 0.9666 | 0.9107 |
0.0986 | 1.0299 | 1000 | 0.1513 | 0.9429 | 0.9430 | 0.9435 | 0.9429 | 0.9384 | 0.9491 |
0.1403 | 1.1329 | 1100 | 0.1515 | 0.9426 | 0.9429 | 0.9444 | 0.9426 | 0.9278 | 0.9631 |
0.1133 | 1.2358 | 1200 | 0.1394 | 0.9475 | 0.9475 | 0.9475 | 0.9475 | 0.9531 | 0.9397 |
0.1117 | 1.3388 | 1300 | 0.1525 | 0.9457 | 0.9459 | 0.9467 | 0.9457 | 0.9371 | 0.9576 |
0.1277 | 1.4418 | 1400 | 0.1311 | 0.9490 | 0.9491 | 0.9492 | 0.9490 | 0.9501 | 0.9475 |
0.0886 | 1.5448 | 1500 | 0.1375 | 0.9503 | 0.9503 | 0.9503 | 0.9503 | 0.9628 | 0.9331 |
0.1273 | 1.6478 | 1600 | 0.1297 | 0.9533 | 0.9533 | 0.9535 | 0.9533 | 0.9536 | 0.9529 |
0.1102 | 1.7508 | 1700 | 0.1136 | 0.9578 | 0.9578 | 0.9578 | 0.9578 | 0.9637 | 0.9498 |
0.0793 | 1.8538 | 1800 | 0.1269 | 0.9562 | 0.9561 | 0.9563 | 0.9562 | 0.9718 | 0.9348 |
0.0995 | 1.9567 | 1900 | 0.1129 | 0.9591 | 0.9590 | 0.9591 | 0.9591 | 0.9702 | 0.9437 |
0.0846 | 2.0597 | 2000 | 0.1362 | 0.9533 | 0.9534 | 0.9543 | 0.9533 | 0.9422 | 0.9685 |
0.096 | 2.1627 | 2100 | 0.1383 | 0.9563 | 0.9564 | 0.9572 | 0.9563 | 0.9467 | 0.9696 |
0.0797 | 2.2657 | 2200 | 0.1137 | 0.9620 | 0.9619 | 0.9619 | 0.9620 | 0.9711 | 0.9494 |
0.0602 | 2.3687 | 2300 | 0.1211 | 0.9609 | 0.9609 | 0.9609 | 0.9609 | 0.9664 | 0.9532 |
0.0951 | 2.4717 | 2400 | 0.1194 | 0.9614 | 0.9615 | 0.9615 | 0.9614 | 0.9628 | 0.9596 |
0.0343 | 2.5747 | 2500 | 0.1237 | 0.9629 | 0.9629 | 0.9630 | 0.9629 | 0.9624 | 0.9634 |
0.0512 | 2.6777 | 2600 | 0.1263 | 0.9625 | 0.9625 | 0.9625 | 0.9625 | 0.9738 | 0.9471 |
0.0532 | 2.7806 | 2700 | 0.1229 | 0.9633 | 0.9633 | 0.9633 | 0.9633 | 0.9706 | 0.9533 |
0.0673 | 2.8836 | 2800 | 0.1206 | 0.9644 | 0.9644 | 0.9644 | 0.9644 | 0.9679 | 0.9596 |
0.0209 | 2.9866 | 2900 | 0.1185 | 0.9645 | 0.9645 | 0.9645 | 0.9645 | 0.9709 | 0.9556 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.2.1
- Datasets 2.20.0
- Tokenizers 0.19.1