Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Hyperparameters Value
name AdamWeightDecay
learning_rate.class_name WarmUp
learning_rate.config.initial_learning_rate 0.0002
learning_rate.config.decay_schedule_fn.class_name PolynomialDecay
learning_rate.config.decay_schedule_fn.config.initial_learning_rate 0.0002
learning_rate.config.decay_schedule_fn.config.decay_steps 22180
learning_rate.config.decay_schedule_fn.config.end_learning_rate 0.0
learning_rate.config.decay_schedule_fn.config.power 1.0
learning_rate.config.decay_schedule_fn.config.cycle False
learning_rate.config.decay_schedule_fn.config.name None
learning_rate.config.decay_schedule_fn.passive_serialization True
learning_rate.config.warmup_steps 2
learning_rate.config.power 1.0
learning_rate.config.name None
decay 0.0
beta_1 0.8999999761581421
beta_2 0.9990000128746033
epsilon 1e-08
amsgrad False
weight_decay_rate 0.01
training_precision float32

Model Plot

View Model Plot

Model Image

Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Space using jmparejaz/TFqa-finetuned-distilbert-base-cased 1